Using the CCAPM with Stochastic Taxation and Money Supply to Examine U.S. REITs Pricing Bubbles

Authors
Robert H. Edelstein and Konstantin Magin

Abstract
We examine three issues relating to U.S. real estate investment trust (REIT) pricing. First, using a modified capital consumption asset pricing model (CCAPM) with stochastic taxation and money supply, we compute the fundamental values for REITs for our sample period, 1972–2013. Second, for publicly traded equity REITs, we define a bubble to be the difference between the actual stock market price and the fundamental value derived from our theoretical model. U.S. REITs have, among other corporate structural features, special rules governing dividend distributions and corporate taxation that make them an especially attractive and preferred vehicle for testing for the presence of pricing bubbles. Our findings suggest that during our sample period, U.S. REITs experienced many price bubbles, some of which were quite large. Third, our results imply that monetary policy, in the short run, plays a role in the formation of these pricing bubbles.

Economists and others have toiled and lucubrated for literally hundreds of years attempting to identify, analyze, and explain asset market bubbles, booms, and busts. From these efforts have emerged numerous studies and substantial and substantive academic and practitioner debates. We use the infinite horizon capital consumption asset pricing model (CCAPM) with stochastic taxation and money supply derived in Magin (2016) and the relatively idiosyncratic corporate structural features of the U.S. equity real estate investment trust (REIT) market to identify and statistically analyze bubbles for U.S. equity REITs between 1972 and 2013. As employed in this study, an economic bubble occurs when significant trading occurs at prices that appear to be inconsistent with intrinsic fundamental value.

Our results suggest that during our sample period, 1972–2013, U.S. equity REITs experienced many price bubbles (i.e., observed REIT prices differed from theoretical fundamental values), some of which were quite large. We discuss plausible explanations for these bubbles. In particular, our results indicate that changes in the real money supply play a statistically significant role for accentuating U.S. equity REIT pricing bubbles.
Of course, statistical analyses of pricing bubbles are joint tests of the theoretical
fundamental value metric and deviations of the observed market prices from this
metric. So in order to examine bubbles, it is important to create a trustworthy
measure of fundamental value. Our statistical strategy to perform the joint test,
therefore, is to divide the analyses into two sequential parts. First, we test the
statistical reliability of the fundamental value, which serves as the precursor to
the second test. Then we analyze deviations of the observed market prices from
fundamental values (i.e., pricing bubbles). We employ two separate but related
models for deriving fundamental, intrinsic REIT values based on two variants of
the CCAPM. The first value model is the CCAPM with stochastic taxation; and
the second value model is the CCAPM with stochastic taxation and money
supply.¹ As explained below, we believe these two theoretical models provide
reasonable estimates for fundamental value.

How and why is this pricing bubble study different from the multitude of
predecessors? First, while it should almost go without saying, corporate managing,
organizing, and planning, as well as shareholder-investor decision-making tend to
be tax sensitive. Any analysis of stock prices that does not take into account the
impacts and effects of corporate and investor taxation is likely to be ignoring an
important explanatory element for market behavior. Our analysis attempts to take
into account that taxation is both stochastic and important; we integrate stochastic
taxation into an asset pricing model employing the CCAPM framework.

Second, publicly traded equity REITs vis-à-vis publicly traded C-corporations
provide a natural laboratory for analyzing asset pricing and evaluating bubbles
for the following reasons: (1) REITs, if they follow regulatory requirements,
effectively do not pay taxes on net income at the corporate level; and (2) REITs
are required to pay at least 90% of net income in the form of dividends. In essence,
REITs distribute a substantial amount of cash flow in the form of dividends, and
do not pay dividends from after-tax earnings, unlike “normal” profitable C-
corporations. While corporations and shareholders-investors are typically carefully
planning and monitoring taxation, in the case of REITs, corporate taxes de facto
are inconsequential. These factors obviate our need to develop a pricing model
for both corporate and investor taxation. Instead our models will be able to focus
on taxation at the shareholder-investor level only.

Third, in order to identify and evaluate asset price bubbles, one needs to have a
reliable fundamental theory of value (price) to compare with the observed market
value (price). It is the difference between the observed contemporaneous market
value and the theoretical, fundamental value that is the measure for the magnitude
of the asset price bubble. Many asset bubble pricing studies either do not provide
an explicit theory of price (value) and/or simply compare market prices to data
related to general economic fundamentals. For example, several studies of housing
price bubbles simply compare the rates of change of observed housing sales prices
to changes in household incomes and so forth. In contrast, we calibrate
fundamental theoretical value for U.S. REITs by employing modified existing
CCAPM with stochastic taxation. These models have been able to explain a
substantial portion of the equity premium puzzle in real estate. The obverse side for explaining the puzzle is related to estimating reliable fundamental value pricing.

Fourth, many well-respected analyses of the booms and busts (and bubbles) claim that debt (often associated with the growth in the money supply) frequently plays a paramount role in the generation of these asset boom, bust, bubble cycles. To address possible effects of monetary policy on the real asset prices, we use a new modified infinite horizon CCAPM with stochastic taxation and real money supply derived in Magin (2016). Thus, by incorporating the real money supply into our price model, we provide a benchmark for the theoretical asset price, taking into account the real money supply.

Fifth, why do we use the modified CCAPM versus the simpler CAPM (capital asset pricing model) to perform our statistical analysis? The CAPM is a one time period analysis that identifies the risk of any security as the covariance between the security’s rate of return and the rate of return of the market portfolio. According to the simple CAPM, the uncertainty associated with the market portfolio is the sole source of risk in the economy, but this model does not provide a theoretical intertemporal structure that allows one to identify what causes the market portfolio to be risky. In contrast, macroeconomics does provide a theoretical structure that enables us to identify various sources of aggregate uncertainty over time, as well as to understand the mechanisms by which these macroeconomic variables affect security returns and prices. The intertemporal asset pricing model that is embedded in stochastic models of macroeconomics is the CCAPM. The name derives from the fact that the equations that describe the behavior of asset prices and returns in the CCAPM devolve from the intertemporal consumption/savings and asset choice decisions of households. Hence, the CCAPM provides a preferred macroeconomic intertemporal stochastic asset pricing framework. As indicated, we use the modified CCAPM that incorporates stochastic taxation and money supply.

The remainder of the paper is organized as follows. We provide a selective review of the voluminous booms, busts, bubbles, and debt literature, as well as that for stochastic taxation and the equity premium puzzle, and how these subject areas relate to this paper. We then review the theoretical foundations of this paper—the CCAPM with stochastic taxation and real money supply. Employing a set of reasonable parametric values for key variables, we next quantify and statistically test the theoretical pricing equations derived in Magin (2016). We then use the theoretical values (prices) for REITs implied by the CCAPM with stochastic taxation and the real money supply to identify and analyze possible asset pricing bubbles. The paper closes with a brief conclusion and summary.

Literature Review

This research paper spans, interfaces, and extends several well-developed, extensive and expansive financial economic research subject areas. Our paper is
influenced by several interesting and important analyses pertaining to real estate market booms and busts. Our research is, also, intertwined with asset pricing models with concomitant issues, such as the equity premium puzzle, the coefficient of relative risk aversion for investors, and the impacts of stochastic taxation on investment decision-making. We next provide a brief review of pertinent prior research.

Booms, Busts Bubbles, and Debt

As a starting point for understanding bubbles, one should acknowledge the contribution made by Aliber and Kindleberger (2011) in their book, *Manias, Panics and Crashes*. They trace and analyze various bubble episodes across history in which economic outcomes are speculative, and in no way reflective of the underlying fundamental economic values. Their analyses of the northern European tulip mania in 1636–1637 and the English South Seas bubble in the early 1700s are captivating and reminiscent of alleged bubbles throughout history. During the peak of tulip mania in March 1637, tulip bulbs were transacting for values that were about 10 times the annual income of a skilled craftsman. Suddenly, in 1637 the tulip bulb values started to decline precipitously to levels of 2% to 5% of their peak. The South Sea Company, a British stock company founded in 1711, was a public-private partnership that was granted a monopoly for British trade with South America. However, England was at war with Spain, and Spain controlled South America. Hence, there were little real prospects that trade would take place for the company in South America. However, the company stock skyrocketed as it expanded its transactions in British government debt. The company’s value peaked in 1720, before collapsing to approximately the original flotation price; hence, the so-called South Sea Bubble. Because of the public outcry, Britain in 1720 passed the Bubble Act, which forbade the creation of such stock companies without royal chartering.

Friedman and Schwartz (1965), in their study of the Great Depression, demonstrate that the inept mis-management of monetary policy exacerbated an economic downturn, creating a downward spiral bubble for the monetary system, as well as the real economy. They claim that “a moderately informed understanding of them (the monetary economics of the banking panic) would have cut short the liquidity crisis before it had gone very far, and perhaps before the end of 1930” (p. 112). They also aver that bubbles/collapses can sometimes be readily avoided, but once underway are difficult to control and rectify: “Economic collapse often has the character of a cumulative process. Let it go beyond a certain point, and it will tend to for a time to gain strength from its own development as its effects spread and return to intensify the process of collapse. Because no great strength would be required to hold back the rock that starts a landslide, it does not follow that the landslide will not be of major proportions” (p. 123).

Friedman (1968) concludes that monetary policy cannot affect real variables in the long run. He writes that “It cannot use its control over nominal quantities to
peg a real quantity—the real rate of interest, the rate of unemployment, the level of real national income, the real quantity of money, the rate of growth of real national income, or the rate of growth of the real quantity of money."

More recently, in a 2012 speech, Ben Bernanke, Federal Reserve Chairman, citing research by Fuster and Willen (2010), Hancock and Passmore (2011), Krishnamurthy and Vissing-Jorgensen (2011), and Wright (2012), claims “early skeptics of balance sheet (monetary) policies worried that any effects on Treasury yields would not be transmitted to other interest rates and asset prices. The evidence reported in these papers refutes this concern.” In the same speech, he recognizes that stimulative monetary policy may have potential for creating “risks to financial stability.” Swanson (2015) indicates that monetary policy, and especially large-scale asset purchases, during 2009–2015 had large effects on corporate yields (raising corporate bond prices) and stock market asset prices. Swanson suggests that these monetary policy impacts may not be persistent (i.e., generate short-run asset price effects). In sum, more recent research suggests that monetary policy has the potential to play a substantive part in the genesis of bubbles, booms, and busts.

Reinhardt and Rogoff (2009) explore the interrelationship between speculative bubbles, inflation, debt, and monetary crises over the last 800 years. As in Aliber and Kindleberger (2011), they examine several historical episodes of speculative bubbles, and attribute many of the bubbles to unrealistic expectations, speculative behavior, and over leverage. They conclude that public and private sector mishandling of debt is frequently the cause of these speculative bubbles. Mian and Sufi (2014) examine how the Great Recession of 2008 and the housing market were intertwined with the financial sector, especially because of overzealous mortgage debt issuance.

Shiller (2009) in his book, *Irrational Exuberance*, a phrase coined by a now infamous quote from then Federal Reserve chieftain Alan Greenspan, develops several arguments demonstrating how the stock market was “overvalued.” He also suggests that the U.S. real estate market at the time (2005) was likely to be a bubble, a bubble that was punctured three or four years after the book.

It is often thought that “bubbles” are relatively short-term phenomena, and quickly come down to earth. The U.S. residential real estate bubble commenced in 2001, and did not reach its peak until 2006. This real estate bubble was replicated in many parts of the world, coming to a crashing halt in 2007 (see Bardhan, Edelstein, and Kroll, 2012). In fact, bubbles can last decades, as documented by Ambrose, Eichholtz, and Lindenthal (2012). In their study of 300+ years of housing price behavior in Holland, they find that bubbles can have elongated lives, lasting 70 or 80 years where housing prices systematically do not reflect the underlying economic rental fundamentals.

While there are many explanations, ranging from overleverage—loose monetary policy, crowd herding, animal spirits, and heterogeneous expectations—the upshot
is that asset prices can differ significantly, sometimes for prolonged periods, from intrinsic underlying fundamental economic value. This said, it is sometimes difficult to determine what is the underlying intrinsic fundamental economic value, irrespective of the mechanism causing the speculative bubble.

Macro Policy and Stock Market Prices — Returns

Many earlier studies trace the interrelationships between and among various aspects of macro policy, especially monetary policy, and their impacts on stock market prices and returns. Fama and French (1989), Schwert (1990), and Chen (1991), among others, indicate that the term structure, affected by monetary policy, can explain variations in expected stock returns. The findings in Fama and French (1989) imply that monetary policy strongly influences the equity market required rate of return. Jensen and Johnson (1995) claim that there is a direct link between Federal Reserve discount rate changes and stock market returns. Patelis (1997) suggests that monetary policy variables can be used to forecast stock market returns. Thorbecke (1997) provides empirical evidence that the various forms of monetary policy, measured by federal fund rates and so forth, impact stock market returns. Jensen, Mercer, and Johnson (1996) find that the impacts of monetary policy over the business cycle affect expected security returns asymmetrically. Jensen and Mercer (2006) find that turning points and monetary policy are important predictors of future security market behavior.

More recent studies, such as Bjournland and Leitemo (2009) and Ozdagli and Yu (2012), among others, suggest that monetary policy changes do not affect stock market returns uniformly. The effects of monetary policy on the expected returns and pricing of individual stocks appear to depend on both the economic cycle and the micro circumstances of individual firms. Several studies (e.g., Darrat and Glascock, 1989; Mueller and Pauley, 1995; Chen, Peng, Shyu, and Zeng, 2011) also indicate that the rates of return for REITs are sensitive to changes in monetary policy. In summary, the empirical evidence strongly suggests that monetary policy is intertwined in the economic process for determining stock market expected rates of returns.

Fundamental Asset Prices, Stochastic Taxation, and the Equity Premium Puzzle

Paradoxically, almost no research has been conducted on the effects of stochastic taxes on asset prices and allocations. The research that has been done was primarily motivated by the equity premium puzzle. The equity premium puzzle was originally identified by Mehra and Prescott (1985), using historical data for the stock market portfolio $\beta = 1$. The traditional CCAPM, with an isoelastic constant relative risk aversion (CRRA) utility function and an expected equity risk premium of 6% for the S&P 500, using average historical stock returns, produces a coefficient of relative risk aversion of roughly 47.6. This unbelievably high coefficient of relative risk aversion constitutes the so-called “equity premium
puzzle.’’ There have been many attempts to resolve the equity premium puzzle. See DeLong and Magin (2009), for example, for a review and analysis of various attempts to resolve the equity premium puzzle. The introduction of taxation into the standard macroeconomic models seemed to pave one of the most promising ways to approach the puzzle. McGrattan and Prescott (2005) and Sialm (2006, 2009) were among the first to introduce taxation into the general equilibrium models. However, their work does not resolve or directly address the puzzle.

Magin (2016) derives the infinite horizon CCAPM with stochastic dividend taxation and monetary policy. He finds that under reasonable assumptions on assets’ dividends and probability distributions of the future dividend taxes and consumption, the model implies the constant price/after-tax dividend ratios. He also suggests that the higher current and expected dividend tax rates imply lower current asset prices. Finally, he derives that, contrary to popular belief, monetary policy is neutral, in the long run, with respect to the real equilibrium asset prices.

Magin (2015a) proves the existence of equilibria in the infinite horizon general equilibrium with incomplete markets (GEi) model with insecure property rights. Insecure property rights come in the form of the stochastic taxes imposed on agents’ endowments and assets’ dividends. He finds that under reasonable assumptions, financial market (FM) equilibria exist for most of the stochastic tax rates. Moreover, sufficiently small changes in stochastic taxation preserve the existence and completeness of FM equilibria.

Magin (2015b), recognizing that taxation uncertainty plays a major role for investors, introduced a modified CCAPM with a stochastic tax rate τ, imposed on the income and capital wealth of stock holders. Using this modified model, he finds that for a typical investor, who realizes after-tax dividend income as well as short-term and long-term gains in accordance with historical patterns, the coefficient of relative risk aversion is 3.76. Since earlier studies by Mehra (2003) and Mehra and Prescott (2003) suggest that a coefficient of relative risk aversion, α, between 2 and 4 would seem reasonable, the Magin estimate for $\alpha = 3.76$ is believable.

The risk premium puzzle for asset classes other than $\beta = 1$ stock market portfolios has been largely unexplored. The known exceptions for real estate assets are Shilling (2003) and Edelstein and Magin (2013, 2014). In his study, Shilling (2003) deploys the CCAPM and two different real estate value data sets; however, he does not take into account the possible impacts of taxation. He confirms the existence of the equity premium puzzle for real estate assets, and concludes that the “puzzle” is even more pronounced for real estate than for the general stock market.

In contrast, employing a novel modeling twist by applying the CCAPM with stochastic taxation derived in Magin (2015b) to NAREIT data, Edelstein and Magin (2013) demonstrate that, for a range of reasonable stochastic tax burdens, the coefficient of relative risk aversion for U.S. equity REIT shareholders is likely
to fall within the interval of 4.32 to 6.29, values significantly lower than those reported in most prior studies for real estate and other asset markets. These results imply that the CCAPM with stochastic taxation will generate reasonable fundamentally determined REIT asset prices.

Developing and Testing CCAPM for REITs Pricing

In this section, we delineate two related models for computing the fundamental value of REITs. We then examine statistically for each of our REIT fundamental values how well the theory fits actual, observed REIT market prices. In this way, by presenting a theory for asset pricing first and then testing it empirically, we are following the time honored recommended practices advocated by economists, such as Koopmans (1947) and Lucas (1976). Since the CCAPM with stochastic taxation generates a reasonable coefficient of risk aversion, a first natural application is to use this model to create theoretical REIT asset prices. We dub this first theoretical price to be the “fundamental REIT value, without money.”

The money supply, as discussed above, is believed by many to have a special impact on asset prices. Hence, we use a second extension of the CCAPM with stochastic taxation and money supply to derive a second measure for REIT fundamental value. We dub this second theoretical price to be the “fundamental REIT value, with money.”

CCAPM with Stochastic Dividend Taxation and without Monetary Policy

According to Magin (2016), CCAPM with stochastic dividend taxation and without monetary policy implies:

\[
P_{kt} = \left[\frac{e^{\mu_e + 1/2 \sigma_e^2}}{1 - e^{\mu_e + 1/2 \sigma_e^2}} \right] \cdot (1 - \tau_t) \cdot d_{kt} \quad \forall k \in \{1, ..., n\}, \tag{1}
\]

where \(P_{kt}\) is the price per share of an asset \(k\) at period \(t\), \(d_{kt}\) is the dividend per share paid by an asset \(k\) at period \(t\), and \(\tau_t\) is the dividend tax at period \(t\),

\[
\mu_e = E \left[\ln b \left(\frac{c_{t+1}}{c_t} \right)^{(1 - \alpha)} \right],
\]

\[
\sigma_e^2 = \text{VAR} \left[\ln b \left(\frac{c_{t+1}}{c_t} \right)^{(1 - \alpha)} \right].
\]
Taking logarithms of both sides, we obtain:

\[
\ln[p_{kt}] = \ln \left[\frac{e^{\mu_c + 1/2\sigma_c^2}}{1 - e^{\mu_c + 1/2\sigma_c^2}} \right] + \ln[(1 - \tau_t) \cdot d_{kt}] \quad \forall k \in \{1, ..., n\}.
\]

Let us quantify now this theoretical model.

Historically, Mehra (2003) and Mehra and Prescott (2003) find that:

\[
E \left[\ln \left(\frac{c_{t+1}^{r+1}}{c_{t+1}} \right) \right] = 0.02,
\]
\[
\text{VAR} \left[\ln \left(\frac{c_{t+1}^{r+1}}{c_{t+1}} \right) \right] = 0.00125.
\]

Set:

\[
b = \frac{1}{R_f} = \frac{1}{1.01} = 0.99.
\]

Therefore, we estimate:

\[
\mu_c = \ln(0.99) + (1 - a) \cdot 0.02,
\]
\[
\sigma_c^2 = (1 - a)^2 \cdot 0.00125.
\]

Thus,

\[
\mu_c + \frac{1}{2} \sigma_c^2 = \ln(0.99) + (1 - a) \cdot 0.02 + \frac{1}{2} \cdot (1 - a)^2 \cdot 0.00125.
\]
Hence,

\[e^{\mu + 1/2 \sigma^2} = e^{\ln(0.99) + (1 - \alpha) \cdot 0.02 + 1/2 \cdot (1 - \alpha)^2 \cdot 0.00125}. \]

Edelstein and Magin (2013) estimated that for equity REITs holders:

\[4.32 < \alpha < 6.29. \]

Therefore, it is reasonable for the purposes of our analyses to set:

\[\alpha = 5. \]

So:

\[\left[\frac{e^{\mu + 1/2 \sigma^2}}{1 - e^{\mu + 1/2 \sigma^2}} \right] = \left[\frac{e^{\ln(0.99) + (1 - \alpha) \cdot 0.02 + 1/2 \cdot (1 - \alpha)^2 \cdot 0.00125}}{1 - e^{\ln(0.99) + (1 - \alpha) \cdot 0.02 + 1/2 \cdot (1 - \alpha)^2 \cdot 0.00125}} \right] = 13.8 \]

and

\[\ln \left[\frac{e^{\mu + 1/2 \sigma^2}}{1 - e^{\mu + 1/2 \sigma^2}} \right] = \ln \left[\frac{e^{\ln(0.99) + (1 - \alpha) \cdot 0.02 + 1/2 \cdot (1 - \alpha)^2 \cdot 0.00125}}{1 - e^{\ln(0.99) + (1 - \alpha) \cdot 0.02 + 1/2 \cdot (1 - \alpha)^2 \cdot 0.00125}} \right] = 2.6247. \]

As in Edelstein and Magin (2013, 2014), we are assuming that the typical investor in REITs, who has below average ordinary income tax rates, pays an overall effective dividend tax rate \(\tau_{rek}^d \) of half of that of an investor in general stocks.\(^2\)

Therefore, using equation (2), we obtain the following expression for calculating theoretical prices of equity REITs:

\[\ln[p_{kt}] = 2.63 + 1.00 \cdot \ln[(1 - \tau_{rek}^d) \cdot d_{kt}] \quad \forall k \in \{1, \ldots, n\}. \quad (3) \]
Thus, equation (3) represents the resultant of applying the CCAPM with stochastic
taxation, with our parametric assumptions, to REITs.

In order to test the empirical validity of our theory, we regress, using OLS, the
logarithm of the annual NAREIT real price index \(\ln[\tilde{p}_{kt}] \) for equity REITs against
the logarithm of the annual after-tax real REIT dividend payout \(\ln[(1 - \tau_{\text{ret}}) \cdot d_{kt}] \) for the 1972–2013 period.\(^3\) We obtain the following OLS regression for 1972–2013:

\[
\ln[\tilde{p}_{kt}] = 3.34 + 0.89 \cdot \ln[(1 - \tau_{kt}) \cdot d_{kt}] \tag{4}
\]

Adjusted \(R^2 = 0.55 \), F-statistic = 49.98, DW-statistic = 0.98

Equation (4) is the regression output, analogous to the theoretical REIT pricing
model equation (3). The results are partially consistent with the theoretical model.
In particular, the coefficient for after-tax REIT dividend payouts is statistically
different from zero, but not statistically different from unity (both at the 1% confidence levels). On the other hand, the estimated value of the intercept term is statistically different from zero (at the 1% significance level) and statistically
different (at the 5% level) from the theoretical model intercept value. The adjusted
\(R^2 \) is 0.55. Hence, the model explains a little more than half of the REIT price variation, during an era with several significant perceived bubbles in real estate markets.

Unfortunately, the Durbin-Watson statistic associated with the OLS estimation for
equation (4) indicates that there is significant autocorrelation.\(^4\) Thus, the estimated
coefficients are likely to be biased. In order to address this problem, we adopt a
modified error correction model (ECM). This method creates indirectly unbiased
coefficient estimators for the long-run equilibrium relation between the price
(value) of REITs and the after-tax dividends. See the Appendix for the derivation
of the modified ECM.

The form of the ECM is as follows:

\[
\Delta \ln[\tilde{p}_{kt}] = \delta_0 + \delta_1 \cdot \Delta \ln[(1 - \tau_{kt}) \cdot d_{kt}] \\
+ \delta_2 \cdot \ln[\tilde{p}_{kt-1}] + \delta_3 \cdot \ln[(1 - \tau_{kt-1}) \cdot d_{kt-1}] \\
+ \phi_1(DPRE \ 1989) + \phi_2(D \ 2008) + \phi_3(D \ 2009),
\]

\[\text{J R E R} \quad \text{V o l . 3 9} \quad \text{N o . 4 – 2 0 1 7} \]
where:

\[
\begin{align*}
DPRE_{1989} &= \begin{cases}
1 & \text{if } t \leq 1989 \\
0 & \text{otherwise},
\end{cases} \\
D_{2008} &= \begin{cases}
1 & \text{if } t = 2008 \\
0 & \text{otherwise},
\end{cases} \\
D_{2009} &= \begin{cases}
1 & \text{if } t = 2009 \\
0 & \text{otherwise}.
\end{cases}
\end{align*}
\]

Equation (4') represents the statistical estimation of the ECM, with the addition of fixed time effects for pre-1989, 2008, and 2009:

\[
\begin{align*}
\Delta \ln[\hat{P}_{kt}] &= -0.98 - 0.81 \cdot \Delta \ln[(1 - \tau_i) \cdot d_{kt}] \\
&+ 0.37 \cdot \ln[\hat{P}_{k,t-1}] - 0.41 \cdot \ln[(1 - \tau_{t-1})] \\
&- 0.04 \cdot (DPRE_{1989}) - 0.36 \cdot (D_{2008}) \\
&- 0.55 \cdot (D_{2009}).
\end{align*}
\]

\[\text{Adjusted } R^2 = 0.69\]

In turn, equation (4') can be employed to generate the unbiased coefficient estimates for the long-term relation for our model:

\[
\begin{align*}
\ln[\hat{P}_{kt}] &= \hat{\alpha} + \hat{\gamma} \cdot \ln[(1 - \tau_i) \cdot d_{kt}] \ \forall k \in \{1, \ldots, n\}, \\
\hat{\alpha} &= \frac{-\delta_0}{\delta_2} = 2.64 \ (s.e. = 0.69), \\
\hat{\gamma} &= \frac{-\delta_3}{\delta_2} = 1.11 \ (s.e. = 0.44).
\end{align*}
\]

The derived statistical results for \(\hat{\alpha}\) and \(\hat{\gamma}\) imply that each of these coefficients are statistically different from zero and statistically consistent with the economic theory personified in equation (3). Put somewhat differently, the results suggest...
that the relation described by equation (3) is an appropriate measure of fundamental long-run equilibrium value for REITs at each point in time.

It is claimed that monetary policy may have had a significant influence on the pricing of real estate assets at various times during our sample period, 1972–2013. In order to examine the influence of the real money supply on REIT prices, we apply the CCAPM to include both stochastic taxation and real money supply.

CCAPM with Stochastic Dividend Taxation and with Monetary Policy

According to Magin (2016), CCAPM with stochastic dividend taxation and monetary policy implies:

\[
p_{kt} = e^{\mu_{t} + 1/2 \sigma_{t}^2} \cdot \left[\frac{e^{\mu_{t} + 1/2 \sigma_{t}^2}}{1 - e^{\mu_{t} + 1/2 \sigma_{t}^2}} \right] \cdot d_{kt} \forall k \in \{1, \ldots, n\}. \tag{5}\]

Taking logarithms of both sides, we obtain:

\[
\ln[p_{kt}] = \ln \left[e^{\mu_{t} + 1/2 \sigma_{t}^2} \cdot \frac{e^{\mu_{t} + 1/2 \sigma_{t}^2}}{1 - e^{\mu_{t} + 1/2 \sigma_{t}^2}} \right] \\
+ \ln[d_{kt}] \forall k \in \{1, \ldots, n\}, \tag{6}\]

where:

\[
\mu_{t} = E[\ln[1 - \tau_{t}]],
\]
\[
\sigma_{t}^2 = VAR[\ln[1 - \tau_{t}]].
\]

We also know that:

\[
\mu_{t} = -0.3560,
\]
\[
\sigma_{t}^2 = 0.0090.
\]
Using equation (6), we obtain the following expression for calculating theoretical prices of equity REITs:

\[
\ln[p_k] = 2.72 + 1.00 \cdot \ln[d_{kt}] \forall k \in \{1, \ldots, n\}.
\] (7)

Thus, equation (7) represents the resultant of applying the CCAPM with both stochastic taxation and monetary policy, with our parametric assumptions, to REITs.

In order to test the empirical validity of our theory represented by equation (7), we regress, using OLS, the logarithm of the annual NAREIT real price index \([\bar{p}_{kt}]\) for equity REITs against the logarithm of the annual real REIT dividend payout \(\ln[(d_{kt})]\) for the 1972–2013 period. We obtain the following OLS regression for 1972–2013:

\[
\ln[\bar{p}_{kt}] = 2.81 + 0.97 \cdot \ln[d_{kt}].
\] (8)

\[
\text{Adjusted } R^2 = 0.47, \text{ F-statistic } = 36.81, \text{ DW-statistic } = 0.95
\]
Analogous to equation (4), equation (8) is the OLS regression we use to test the validity of the REIT pricing model, inclusive of the real money supply, equation (7). In equation (8), the values of the regression intercept and the coefficient for the REIT real annual dividend payouts are statistically different from zero (at the 1% level), but not statistically different from the theoretical values computed in equation (7). That is, the results are consistent with the REIT pricing model, with the inclusion of the real money supply. The overall fit for the OLS regression is 0.47.

However, the Durbin-Watson statistic associated with the OLS estimation for equation (8) suggests that there is a significant autocorrelation problem. In such circumstances, the estimated coefficients for equation (8) are likely to be biased. In order to address this issue, as we have done for equation (4) for the stochastic taxation model, we employ a modified ECM for the stochastic taxation–money supply theoretical model. The ECM will permit us to derive unbiased coefficient estimators for the long-run equilibrium relation between the price (value) of REITs and the dividends (for the stochastic taxation/money supply theoretical model). The form of the ECM is as follows:

\[
\Delta \ln[\bar{p}_{kt}] = \delta_0 + \delta_1 \cdot \Delta \ln[d_{kt}] + \delta_2 \cdot \ln[\bar{p}_{kt-1}]
+ \delta_3 \cdot \ln[d_{kt-1}] + \phi_1 \cdot (DPRE \ 1989)
+ \phi_2 \cdot (D \ 2008) + \phi_3 \cdot (D \ 2009).
\]

Equation (8’) represents the statistical estimation of the ECM, with the addition of fixed time effects for pre-1989, 2008, and 2009:

\[
\Delta \ln[\bar{p}_{kt}] = -0.59 \pm 0.87 \cdot \Delta \ln[d_{kt}] + 0.36 \cdot \ln[\bar{p}_{kt-1}]
- 0.49 \cdot \ln[d_{kt-1}] + 0.04 \cdot (DPRE \ 1989)
- 0.33 \cdot (D \ 2008) - 0.56 \cdot (D \ 2009).
\]

Equation (8’) can be utilized to create the unbiased coefficient estimates for the long-term relation for our model:
The derived statistical results for $\hat{\alpha}$ and $\hat{\gamma}$ imply that each of these coefficients are statistically different from zero and statistically consistent with the coefficients in equation (7), the pricing model with stochastic taxation and money supply. Put somewhat differently, the results suggest that the relation described in equation (7) is an appropriate measure of the fundamental long-run equilibrium value for REITs at each point in time.

These overall results (derived by using the ECM’s to estimate equations (4’ and (8’)) imply that the long-run equilibrium price/dividend relations from equations (3) and (7) provide reasonable measures for REIT fundamental values over time.

Analyzing REIT Bubbles

We analyze REIT bubbles in this section. Conventionally, the asset pricing bubble for an asset k at time t is defined as the difference $p_{kt} - p_{kt}$ between the actual market price p_{kt} and its fundamental, p_{kt}.

To provide a visual sense for REIT bubbles during the 1972–2013 period, Exhibits 1 and 2 track actual market prices versus theoretical prices p_{kt}. The actual (market) REIT price index in Exhibits 1 and 2 is set to be 100 for 1972. Exhibit 1 charts theoretical REIT prices p_{kt} generated by the CCAPM with stochastic taxation τ_t and without the real money supply M_t/P_t, i.e., equation (1), and actual market prices \bar{p}_{kt} for equity REITs for the 1972–2013 period.

Similarly, Exhibit 2 charts theoretical REITs prices p_{kt} generated by the CCAPM with stochastic taxation τ_t and with real money supply M_t/P_t, i.e., equation (5), and actual market prices \bar{p}_{kt} for equity REITs for the 1972–2013 period.

Exhibits 1 and 2 provide a pictorial vision of REIT booms, busts, and bubbles in 1972–2013. A careful examination of these figures indicates that the positive and negative bubbles suggested by our models are consistent with regulatory changes and economic events. For example, the negative bubble (i.e., the market undervaluation for REITs vis-à-vis our theoretical fundamental valuations) during 1973 and 1974 reflects the fact that real estate markets, in general, and REITs, in particular, were in substantial decline caused, at least in part, by the recessionary economy. The change in the tax law in 1986 made REITs more attractive to real estate investors versus public and private syndication vehicles. These tax changes
created a boom/positive bubble for REITs between 1986 and 1989, reflected in Exhibit 1, and to a lesser extent, in Exhibit 2. Exhibits 1 and 2 identify significant negative REIT bubbles during the general decline in real estate markets and a concomitant elongated recession in 1989–1991. For most of the subsequent 1990s, there was a robust market for REITs, and an emergence of many REIT IPOs and secondary offerings. During this time period, there was a pronounced REIT market ebullience. Exhibit 1 and especially Exhibit 2 suggest a prolonged REIT market positive bubble. The REIT positive bubbles declined as the dot-com boom peaked around 2000. The dot-com boom was precipitously followed by the dot-com bust. In this dot-com bust environment, investors’ preferences changed, and were seeking cash flowing investments. Thus, REITs became a market favorite for investing during the early 2000s. This set of circumstances is reflected by a series of positive bubbles for REITs between 2000 and 2007 in Exhibits 1 and 2.

The REIT industry began struggling in 2007 as the Global Financial Crisis (GFC) affected most asset markets. REIT values plunged during the (GFC), and, as many believe, REIT prices declined to levels that were substantially below their fundamental value. Exhibits 1 and 2 are consistent with these notions about the (GFC), with a negative bubble for REIT pricing occurring in 2008. Because of
the (GFC), many listed equity REITs responded by deleveraging and increasing their equity positions. As equity REITs became solvent and interest rates declined, investors were attracted back to REITs. The REIT market experienced a boom in 2010–2013; in fact, according to our models for fundamental value, many stock analysts, and as reflected in Exhibits 1 and 2, REITs have been in a period of positive bubbles. Hence, we believe our models provide reasonable methods for detecting asset pricing bubbles in the REIT market.

As discussed above, a large prevalent quantum of earlier research indicates that, in the short run, a driving force for the generation of asset price bubbles is the unanticipated rapid growth in debt instruments, in general, and the money supply, in particular. Given the log-linear nature of the CCAPM, as is evident by Equations (3) and (7), it is natural then to create a simple test to examine the empirical impact of the log of the money supply, $\ln[M_t/P_t]$, upon the differential $\ln[p_{kt}] - \ln[p_{kt}^s]$. Therefore, for the purposes of this analysis, it makes sense to define the asset pricing bubble as $\ln[p_{kt}] - \ln[p_{kt}^s]$. Equations (9) and (10) represent partial tests for the effect of changes in the log of the U.S. real money
supply, \(\ln[M_t/P_t]\), upon U.S. REIT bubbles \(\ln[\bar{p}_{kt}] - \ln[p_{kt}]\) during the 1972–2013 period:

\[
\ln[\bar{p}_{kt}] - \ln[p_{kt}] = -2.50 + 0.86 \cdot \ln\left(\frac{M_t}{P_t}\right). \tag{9}
\]

Adjusted \(R^2 = 0.30\), F-statistic = 18.17

In equation (9), using OLS, the dependent variable is \(\ln[\bar{p}_{kt}] - \ln[p_{kt}]\), where \(\ln[p_{kt}]\) is given by equation (3), i.e., it is derived from the CCAPM with stochastic taxation but without money supply. The independent variable is \(\ln[M_t/P_t]\). This regression suggests that increases in the real money supply explain, in part, the U.S. REIT price bubbles; the coefficient for the money supply is statistically significant at the 1% level. The positive coefficient for the money supply implies that the difference between the observed actual REIT market price and the theoretical REIT price increases as the money supply grows. Put somewhat differently, ceteris paribus, increases in the real money supply explain a portion of the variation in \(\ln[\bar{p}_{kt}] - \ln[p_{kt}]\). The adjusted \(R^2\) implies that, in the short run, the money supply explains 30% of the variation in \(\ln[\bar{p}_{kt}] - \ln[p_{kt}]\).

Similar to equation (9), in equation (10), using OLS, the dependent variable is \(\ln[\bar{p}_{kt}] - \ln[p_{kt}]\), where \(\ln[p_{kt}]\) is now given by equation (7), i.e., it is derived from the CCAPM with both stochastic taxation and money supply. Again, the independent variable is \(\ln[M_t/P_t]\):

\[
\ln[\bar{p}_{kt}] - \ln[p_{kt}] = -2.89 + 0.98 \cdot \ln\left(\frac{M_t}{P_t}\right). \tag{10}
\]

Adjusted \(R^2 = 0.36\), F-statistic = 24.31

The results from equation (10) are similar to those found for equation (9). The coefficient for the log money supply is significantly positive at the 1% level. The overall fit for equation (10) explains 36% of the variation between the REIT market price and the model REIT price.

Taken together, the results from equations (9) and (10) are consistent with the notion that, in the short run, the money supply (monetary policy) can have a significant impact on the magnitude of U.S. REIT pricing bubbles. While the findings are for a particular market, the U.S. REIT market during a relatively short time horizon, they do provide new confirming evidence for earlier research that claims that the money supply is an important determinant of the magnitude of asset pricing bubbles.
Conclusion

We identify U.S. REIT price bubbles using NAREIT data for the 1972–2013 period. For this analysis, a bubble is defined for publicly traded REITs to be the difference between the log of the actual, observed stock price and the log of the intrinsic, fundamental value at a point in time. We employ two similar models to estimate fundamental value. The first fundamental, intrinsic value is calculated by utilizing the CCAPM with stochastic taxation and reasonable parametric assumptions. Since the money supply (and other debt instruments) is believed by many to play a crucial role in the generation of asset bubbles, we extend our earlier analysis to calculate a second measure of fundamental value by utilizing the CCAPM with both stochastic taxation and money supply. For analytical purposes, REITs provide a preferred natural laboratory experiment for bubble testing because of the rules governing net income taxation and dividend distributions; in essence, REITs basically are pass-through vehicles without taxation at the entity level, permitting our modeling to focus on the inclusion of shareholder-investor taxation, without the additional complications of investment vehicle taxation. Taken together, the two modified CCAPM fundamental value measures we use and the special structure of REITs create a setting for streamlined analyses for testing for the presence of asset price bubbles.

Our analysis and findings suggest that REIT price bubbles are omnipresent and statistically significant during our sample period. Moreover, changes in the money supply appear to play a role in generating REIT bubbles. While we provide plausible macroeconomic rationales for the various sequences of bubbles, our research should be characterized as identifying but not necessarily explaining the root causes, the intensities, and/or the persistency of these bubbles. We leave the determination of causal explanations and the intensity-persistency relationships between REIT bubbles and other variables as a task for future research.

Appendix

The error correction model (ECM) is designed to create statistically unbiased coefficient estimators in the presence of autocorrelation. The ECM is described by equation (A1):

\[
\ln(p_{kt}) = B_0 + B_1 \cdot \ln[X_t] + B_2 \cdot \ln[X_{t-1}] \\
+ B_3 \cdot \ln(p_{kt-1}) \quad \forall k \in \{1, \ldots, n\},
\]

(A1)
where:

\[X_t = (1 - \tau_t) \cdot d_{kt} \forall k \in \{1, \ldots, n\}. \]

The underlying long-term relation from the model for REIT pricing can be described as equation (A2):

\[\ln[p] = \alpha + \gamma \cdot \ln[X_t] \forall k \in \{1, \ldots, n\}, \quad (A2) \]

In long-run equilibrium, it is assumed that:

\[\ln[p] = \ln[p_{k,t-1}] \forall k \in \{1, \ldots, n\} \text{ and } \ln[X_t] = \ln[X_{t-1}]. \quad (A3) \]

Therefore,

\[\alpha = \frac{B_0}{1 - B_3} \text{ and } \gamma = \frac{B_1 + B_2}{1 - B_3}. \]

Subtracting \(\ln[p_{k,t-1}] \) from both sides of equation (A1) and adding and subtracting \(B_1 \cdot \ln[X_{t-1}] \) from the right-hand side of equation (A1) produces:

\[
\Delta \ln[p_{k,t}] = -(B_3 - 1) \cdot \alpha + B_1 \cdot \Delta \ln[X_t] \\
\quad + (B_3 - 1) \cdot \ln[p_{k,t-1}] \\
\quad + (1 - B_3) \cdot \gamma \cdot \ln[X_{t-1}] \forall k \in \{1, \ldots, n\}. \quad (A4)
\]

Equation (A4) can be rewritten for convenience as:

\[
\Delta \ln[p_{k,t}] = \delta_0 + \delta_1 \cdot \Delta \ln[X_t] + \delta_2 \cdot \ln[p_{k,t-1}] \\
\quad + \delta_3 \cdot \ln[X_{t-1}] \forall k \in \{1, \ldots, n\}, \quad (A4')
\]
such that:

\[
\begin{align*}
\delta_0 &= (1 - B_3) \cdot \alpha, \\
\delta_1 &= B_1, \\
\delta_2 &= B_3 - 1, \\
\delta_3 &= (1 - B_3) \cdot \gamma.
\end{align*}
\]

Equation (A4') becomes the statistical relation to be estimated to correct for the coefficient estimation biases created by autocorrelation. Equation (A4'), with fixed time effects added, is the relation estimated above as equation (4').

Using a similar approach for the ECM, equation (8') can be derived to generate coefficient estimates for \(\hat{\alpha} \) and \(\hat{\gamma} \) for the fundamental REIT pricing model with both stochastic taxation and money supply.

Endnotes

1. See Magin (2015b) for the original derivation of the CCAPM with stochastic taxation. See Magin (2016) for the derivation of the infinite horizon CCAPM with stochastic taxation and money supply. See Edelstein and Magin (2013) for our prior analysis of REITs.

2. Effective dividend tax rates for investors in general stocks can be found at http://users.nber.org/~taxsim/marginal-tax-rates/af.html.

3. Calculations are based on monthly NAREIT All Equity REITs Index data for equity REIT prices and dividends.

4. It is not surprising that there exists autocorrelation for the NAREIT rate of return (log price) data series. This empirical issue of autocorrelation in REIT stock data has been identified by several researchers. It is the other side of the coin for research that finds “momentum” in stock market returns. See Hung and Glascock (2010) and Goebel, Harrison, Mercer, and Whitby (2013) for examples.

References

This research was supported by a grant from the Center for Risk Management Research. We are very grateful to Bob Anderson for his encouragement and kind support. The authors especially wish to thank Ko Wang and two anonymous referees for important suggestions that significantly improved our paper. We also thank Grace Deng for her dedicated and exemplary research assistance.

Robert H. Edelstein, University of California at Berkeley, Berkeley, CA 94720-6105 or edelstei@haas.berkeley.edu.

Konstantin Magin, University of California at Berkeley, Berkeley, CA 94720-6105 or magin@berkeley.edu.