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Abstract

We analyze the optimal allocation of trades to portfolios when the cost associated with
an allocation is proportional to each portfolio’s risk. Our investigation is motivated by
changes in the over-the-counter derivatives markets, under which some contracts may be
traded bilaterally or through central counterparties, splitting a set of trades into two or more
portfolios. A derivatives dealer faces risk-based collateral and capital costs for each portfo-
lio, and it seeks to minimize total margin requirements through its allocation of trades to
portfolios. When margin requirements are submodular, the problem becomes a submodular
intersection problem. Its dual provides per-trade margin attributions, and assigning trades
to portfolios based on the lowest attributed costs yields an optimal allocation. As part
of this investigation, we derive conditions under which standard deviation and other risk
measures are submodular functions of sets of trades. We compare systemwide optimality
with individually optimal allocations in a market with multiple dealers.

JEL Codes: G10, G21, C60, C71.

Keywords: OTC derivatives market, central clearing, collateral, capital, submodularity,
optimization.

1 Introduction

This paper studies the problem of allocating transactions or other individual sources of risk to

portfolios, in order to minimize a sum of risk-based costs for the portfolios.

Our investigation is motivated by changes in the over-the-counter (OTC) derivatives mar-

ket. Prior to the financial crisis, the market for swaps and other OTC derivatives was largely

unregulated, and it operated as a diffuse network of bilateral contracts between market par-

ticipants. In 2009, regulatory authorities from the G-20 countries agreed to reforms that have

reshaped the market.

The reforms have two key elements. First, they require that all sufficiently standardized

contracts be cleared through central counterparties (CCPs). A CCP (or clearinghouse) inter-

poses itself between the two original parties to a contract (two dealers, for example) by entering
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into two back-to-back contracts with the original parties. To protect itself against losses from

the default of a counterparty, the CCP collects collateral (also referred to as margin) from both

parties.

The second key element of the OTC derivatives reforms addresses the part of the market

that continues to trade bilaterally, rather than through CCPs. For these contracts, the reforms

require that the parties exchange collateral (margin) to protect each party against the possible

failure of the other party.

In the centrally cleared market, the margin collected by a CCP from a market participant

depends on the riskiness of the participant’s portfolio of trades at that CCP. In the bilateral

market, the total amount of margin exchanged between two parties similarly depends on the

riskiness of their portfolio of trades, though risk may be measured differently in the bilateral

and centrally cleared settings. The total collateral cost faced by a derivatives dealer is the sum

of its collateral costs across multiple portfolios — one portfolio for each CCP, and one or more

portfolios for each bilateral counterparty.

The collateral cost associated with each portfolio increases with the risk of the portfolio. A

dealer will often have some flexibility in choosing the CCP through which to clear a contract

or deciding to trade the contract bilaterally. To minimize its total collateral costs, the dealer

needs to allocate trades to portfolios in a way that minimizes the sum of risk-based costs over

the portfolios. This is the problem we investigate.

To make the problem more explicit, consider a dealer with a set of trades S with a counter-

party. Suppose the dealer is limited to two trading channels — two CCPs, for example, or one

CCP and the bilateral market. For any subset of trades A ⊆ S, let F (A) and G(S\A) denote

the collateral costs associated with assigning portfolio A to the first channel and assigning the

remaining trades S\A to the other channel. The dealer’s optimization problem is then

min
A⊆S
{F (A) +G(S\A)}. (1)

Regulators have sought to increase bilateral margin requirements to incentivize greater use

of central clearing, which, in the setting of (1), means increasing costs under G to encourage

allocation to F . Regulators and some market participants have also expressed concern about

whether the global supply of high quality collateral is sufficient to meet increased collateral re-

quirements, which entails a concern for an efficient systemwide allocation. See Duffie, Scheicher,

and Vuillemey [11], Ghamami and Glasserman [20], Heller and Vause [23], and Sidanius and

Zikes [34] for details on these regulatory changes and empirical examinations of their impact.

Another instance of (1) arises in the setting of bank capital requirements. A bank faces

separate regulatory capital charges associated with securities held in the “banking book” and
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the “trading book.” In some cases, a bank has flexibility to classify a security either way, for

example by stating that the security will be held to maturity or potentially sold. If we take

S to be the set of securities for which the bank has this discretion, and if we write F and G

for the mappings from portfolios to capital charges in the banking and trading books, then (1)

becomes the problem of allocating securities to minimize capital charges. Along the same lines,

an international banking institution faces choices in selecting a subsidiary through which to

execute a transaction — a unit based in London or New York, for example. The parent may

face separate capital requirements for each unit, in which case the allocation problem takes the

form in (1).

A further application of (1) arises in the setting of portfolio liquidation. A portfolio manager

seeking to liquidate a set S of securities would like to minimize total transaction costs or market

impact costs in doing so. These costs are best viewed at the portfolio level, rather than at the

level of individual securities. To minimize total costs, the portfolio manager may split the total

portfolio across different executing brokers, across different trading venues, or across different

trading periods. These allocation problems are instances of (1). (For a different problem of

allocating transaction costs to portfolios, see Iancu and Trichakis [25].)

We study the application of (1) when the cost functions F and G are submodular, a setting

that has received extensive study since the work of Edmonds [13]. In our motivating application,

the cost associated with a portfolio is proportional to its risk, so F and G represent measures of

portfolio risk. We interpret submodularity as a strong version of the notion that diversification

reduces risk. Under submodularity, the marginal change in risk from adding an asset to a

portfolio decreases with the addition of another asset.

As a first step, we therefore investigate the submodularity of portfolio risk measures, with

particular emphasis on standard deviation, viewed as set functions defined over a finite set of

assets. Despite the vast literature on properties of risk measures growing out of Artzner et

al. [3], including convexity and subadditivity, the submodular case has received little prior

attention. Conditions for submodularity are therefore of independent interest.

Once we have submodularity, problem (1) leads to several interesting and important proper-

ties. If F and G are monotone as well as submodular, (1) becomes the polymatroid intersection

problem studied by Edmonds [13]. Extensions to the submodular case without monotonicity

are treated in the books by Fujishige [17] and Schrijver [31]. These results provide a dual char-

acterization of (1) through which an individual cost may be attributed to each trade for each of

the two portfolios. Allocating each trade to the portfolio for which it has a lower attributed cost

yields an optimal allocation. This representation provides the dealer with a margin attribution

for each trade under an optimal allocation. Some of these properties can also be interpreted
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through the framework of convex games, in the sense of Shapley [33] and Topkis [35].

When two or more dealers seek to allocate overlapping sets of trades, their optimal al-

locations may conflict. Differences in their cost attributions characterize payments between

dealers that would reconcile their conflicting allocations. In some cases, these payments may

be described as “valuation adjustments” of the type widely used in industry practice (see Gre-

gory [22], Andersen et al. [1], and the references therein). Our framework provides a rigorous

mechanism for the ad hoc practice of decomposing portfolio-level valuation adjustments into

trade-level adjustments.

We also compare systemwide costs in a market with multiple dealers having potentially

conflicting allocation preferences for their shared trades. We compare the sum of individually

optimal costs (assuming each dealer makes its individually optimal allocations), the optimal

systemwide cost (assuming coordination among dealers), and costs under a sequential protocol,

in which dealers make allocation decisions in order of market power. We use the structure of

cost attribution vectors to bound cost differences across these scenarios.

Section 2 develops conditions for submodularity of portfolio risk measures, with particular

emphasis on standard deviation. Section 3 analyzes the optimal allocation decision for a single

dealer. Section 4 introduces the effect of counterparty risk between a pair of dealers, and

Section 5 examines systemwide optimality with multiple dealers. Most proofs are deferred to

an appendix.

2 Submodular Risk Measures

In our motivating application, a dealer has a fixed set of trades to allocate, and we represent

these trades through a set of jointly distributed random variables S = {X1, X2, . . . , XN}. In-

terpret each Xi as the change in value of a derivatives contract over a period of 1–10 days.

The dealer posts collateral (to a CCP or to another derivatives counterparty) as a backstop

against possible changes in the value of the contract over this time interval, which is known as

the margin period of risk. The amount of collateral required is based on a measure of risk of

the dealer’s portfolio of trades with the counterparty; for example, the collateral required may

be a multiple of the portfolio standard deviation. We will assume that every Xi has mean zero:

derivatives are often priced so that this holds and, more broadly, over a short time horizon

the expected change in market prices is typically negligibly small compared to the volatility in

prices.

A margin function (or risk measure) F assigns a margin requirement F (A) to any subset
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A ⊆ S of trades. The margin function is submodular if

F (A ∩B) + F (A ∪B) ≤ F (A) + F (B), ∀A,B ⊆ S. (2)

This condition is equivalent to the requirement that

F (A ∪ {i, j})− F (A ∪ {i}) ≤ F (A ∪ {j})− F (A), ∀A ⊆ S,∀i, j ∈ S\A, i 6= j, (3)

where S\A denotes the complement of A in S. In other words, the incremental margin required

by adding trade j to the portfolio is reduced by the addition of trade i to the portfolio. In (3),

we have implicitly identified the set of random variables S with the set of indices {1, 2, . . . , N},
a simplification we use throughout.

2.1 Submodularity of Standard Deviation: Basic Properties

Let Σ denote the covariance matrix of the trades X1, . . . , XN . For any A ⊆ S, let

σ(A) = Standard Deviation

(∑
i∈A

Xi

)
.

There is a natural correspondence between the subsets of S and the vertices of the hypercube

[0, 1]N , in which we identify A ⊆ S with the vector x ∈ {0, 1}N satisfying xi = 1 if i ∈ A and

xi = 0 if i 6∈ A. We sometimes write this vector as xA. An individual element i ∈ S is identified

with the unit vector ei. We therefore also write

σ(x) =
√
x>Σx and σ(A) =

√
x>AΣxA. (4)

With this notation, condition (3) for submodularity becomes

σ(x+ ei + ej)− σ(x+ ei) ≤ σ(x+ ej)− σ(x), ∀x, x+ ei + ej ∈ {0, 1}N . (5)

For brevity, we call a covariance matrix Σ submodular if (5) holds with σ as defined in (4).

When there is little chance of confusion, we also use the notation σ2
i for the ith diagonal

entry Σii of Σ; that is, σi = σ(ei). If we write Dσ for the diagonal matrix with the σi on the

diagonal, then we may represent Σ as

Σ = DσRDσ,

where R is a correlation matrix. If Σ is positive definite, then R is uniquely determined. For

0 ≤ λ ≤ 1, let

Σλ = Dσ(λR+ (1− λ)I)Dσ,

where I is the N × N identity matrix. Our first result shows that a variety of correlation

patterns are compatible with submodularity:
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Proposition 2.1. Let Σ be a covariance matrix.

(i) If Σ is diagonal (i.e., R = I), then Σ is submodular.

(ii) If R is the matrix of all 1s, then Σ is submodular.

(iii) For any correlation matrix R, there is a λ′ > 0 such that Σλ is submodular for all 0 ≤
λ < λ′.

Proposition 2.1 shows that submodularity of Σ does not have an immediate connection

with the strength or sign of pairwise correlations: both the absence of correlation and perfect

correlation yield submodularity, as do perturbations in the direction of any correlation matrix.

An immediate consequence of part (i) of the proposition is that every covariance matrix

is similar to a submodular covariance matrix. In particular, if we can split and recombine

the original assets into portfolios using eigenvectors of Σ for portfolio weights, the resulting

portfolios will be uncorrelated and their covariance matrix therefore submodular. But this

transformation is not in general possible if the individual assets are indivisible, as we assume.

(For a discussion of risk allocation problems with divisible risks, see Embrechts, Liu, and Wang

[12] and the many references cited there.)

The indivisibility of trades means that we treat σ(·) as a function on the vertices of the unit

hypercube. Such a function can be submodular even if its natural extension to the interior of

the unit hypercube is not, and indeed this distinction will be important in light of the following

result.

Proposition 2.2. Suppose Σ is positive definite, and let σ(w) =
√
w>Σw, for all w ∈ [0, 1]N .

Then σ is submodular throughout [0, 1]N if and only if either Σ is diagonal or N = 2.

Although we assume trades are indivisible, a dealer may choose to bundle certain subsets

of trades, meaning that the entire bundle will always be assigned to the same portfolio. Such a

constraint may arise for example for groups of trades associated with a single client, or because

some trades are used to hedge other trades. Bundling trades i and j means replacing the

original random variables Xi and Xj with their sum Xi + Xj . The effect of bundling on the

covariance matrix is to replace Σ with P>ΣP , where P is an N × K matrix whose columns

are orthogonal elements of {0, 1}N . We might expect that even if Σ is not submodular, it may

become submodular through some bundling of trades. This procedure leads to the following

observation:

Proposition 2.3. If Σ is submodular, then so is any bundling P>ΣP . Every covariance matrix

admits a submodular bundling P>ΣP , for some K ≥ 2.
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2.2 Conditions on Variance

A sufficient condition for submodularity of standard deviation can be formulated through sub-

modularity and monotonicity of variance. Write σij for the ij-entry of Σ

Proposition 2.4. Suppose Σ satisfies the following two conditions:

(i) σij ≤ 0, for all distinct i, j = 1, . . . , N ;

(ii) σ2
i ≥ −2

∑
j 6=i σij, for all i = 1, . . . , N .

Then Σ is submodular, and σ(·) is monotone increasing on {0, 1}N .

Without the factor of 2, and under the sign restriction in (i), condition (ii) would be the

familiar diagonal dominance condition for positive semidefiniteness of Σ. In particular, a matrix

that satisfies (i) and (ii) is an M -matrix by condition (M35) of Berman and Plemmons [6], p.137.

2.3 Generalized Exhangeability

The random variables X1, . . . , XN are called exchangeable if their joint distribution is invariant

under permutations of the random variables. The covariance matrix of exchangeable random

variables takes the form

Σ =


σ2 σ2ρ · · · σ2ρ
σ2ρ σ2 σ2ρ

...
. . .

...
σ2ρ σ2ρ · · · σ2

 , −1/(N − 1) ≤ ρ ≤ 1, (6)

and Σ is positive definite if the bounds on ρ are strict. For ρ < 0 and sufficiently close to

zero, this matrix satisfies the conditions in Proposition 2.4. In fact, submodularity holds for all

feasible ρ:

Proposition 2.5. The covariance matrix of exchangeable random variables is submodular.

We will establish this result as a corollary to a more general condition. For any v ∈ RN , let

diag(v) denote the N ×N diagonal matrix with the entries of v on the diagonal. Write |v| for

the sum of the absolute values of the entries of v. Write R+ for the nonnegative elements of R,

and write R++ for the strictly positive elements.

Proposition 2.6. (i) Suppose that for some v ∈ RN++ and some a ∈ R,

Σ = diag(v) + avv>. (7)
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If Σ is positive semidefinite then it is submodular. (ii) Suppose that for some v, w ∈ RN+ and

some a, b ≥ 0

Σ = diag(v + w) + avv> + bww>. (8)

If

4a(|w|+ b|w|2) ≤ 1 and 4b(|v|+ a|v|2) ≤ 1, (9)

then Σ is submodular.

The exchangeable case becomes a special case of this result (for ρ 6= 1) by taking a =

ρ/(1−ρ)2σ2 and vi = (1−ρ)σ2, i = 1, . . . , N , in (7). The case ρ = 1 is covered by Proposition 2.1.

The conditions in Proposition 2.6 take advantage of the fact that we require submodularity

only on the vertices of the hypercube. In particular, if (7) holds then, for x ∈ {0, 1}N ,

σ2(x) =
∑
i

vix
2
i + a(v>x)2 = (v>x) + a(v>x)2, (10)

so σ depends on x only through v>x.

Submodularity is also preserved by diagonal deviations from exchangeability that satisfy

the bound in the following result.

Proposition 2.7. For ξ ∈ RN+ , let Σξ = diag(ξ) + Σ, with Σ as in (6). Then Σξ is submodular

if either (i) −1/(2N − 1) ≤ ρ ≤ 0 or (ii) 0 < ρ < 1 and

|ξ| ≡
N∑
i=1

ξi ≤
σ2

4

(1− ρ)2

ρ
. (11)

Covariance matrices are often specified through factor models to simplify and regularize

estimation. In financial applications, a small number of factors often explain most of the

observed correlation. To express the matrices of this section as factor models, consider a

general single-factor model

Xi = biZ + ciεi, i = 1, . . . , N, (12)

in which Z, ε1, . . . , εN are uncorrelated, each with unit variance. The resulting covariance matrix

Σ has Σii = b2i + c2
i and Σij = bibj , j 6= i. The exchangeable case corresponds to fixing the

same (bi, ci) for all i = 1, . . . , N . The case of (7) with a > 0 corresponds to setting bi = vi
√
a

and ci =
√
vi, i = 1, . . . , N .

The general single-factor model (12) need not yield submodularity. For example, with

N = 3, b1 = b2 = 1, b3 = 2, and c1 = c2 = c3 = 1, we get

Σ =

 2 1 2
1 2 2
2 2 5

 ,
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and then

σ(0, 1, 0) + σ(1, 1, 1) =
√

2 +
√

19 >
√

6 +
√

11 = σ(1, 1, 0) + σ(0, 1, 1),

so submodularity fails.

Covariance matrices are often approximated or regularized using principal components anal-

ysis. A spectral decomposition yields

Σ = λ1v1v
>
1 + · · ·+ λNvNv

>
N ,

where λ1 ≥ · · · ≥ λN are the eigenvalues of Σ and v1, . . . , vN are corresponding orthonormal

eigenvectors. Keeping just the first k ≤ N terms in this representation yields a rank-k approx-

imation to Σ. In financial data, the first principal component often dominates, meaning that

λ1 is much larger than the other eigenvalues. The first principal component often represents

a market factor, for which all components of the eigenvector v1 are positive, meaning that all

securities have positive exposure to the market factor.

Proposition 2.8. If Σ = λvv>, where λ > 0 and all entries of v have the same sign, then Σ

is submodular.

This follows directly from (x>Σx)1/2 = λ(x>vv>x)1/2 = λ|x>v|.

2.4 Correlation Conditions

For positive definite Σ and vectors x, y ∈ RN\{0}, define the correlation between x and y as

ρ(x, y) =
x>Σy

σ(x)σ(y)
.

Our next result formulates conditions for submodularity in terms of correlations.

Proposition 2.9. Suppose the covariance matrix Σ is positive definite. Then Σ is submodular

under either of the following conditions.

(i) For any distinct x, y, w ∈ {0, 1}N\{0} and any t ∈ [0, 1],

ρ(x+ y + tw,w) ≤ ρ(x+ tw,w).

(ii) For all x, y, w,∈ {0, 1}N\{0} with x+ y + w ∈ {0, 1}N\{0},

ρ(x+ y + w,w) ≤ ρ(x,w). (13)
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Moreover, if for all w ∈ (0, 1)N and all distinct i, j ∈ {1, . . . , N},

ρ(ei, ej) ≤ 2ρ(ei, w)ρ(ej , w), (14)

then σ(·) is logsubmodular, in the sense that

σ(x ∧ y)σ(x ∨ y) ≤ σ(x)σ(y),

for all x, y ∈ RN . In particular, (14) holds if Σ is exchangeable with ρ ≥ 1/2 in (6).

We will encounter applications of logsubmodularity later. It is also useful through the

following connection, which shows in particular that a strong version of logsubmodularity yields

submodularity.

Proposition 2.10. If σ(·) is submodular and monotone increasing or decreasing on {0, 1}N ,

then it is logsubmodular on {0, 1}N . If all off-diagonal elements of Σ are nonnegative and

σij + σ(x)σ(x+ ei + ej) ≤ σ(x+ ei)σ(x+ ej), (15)

for all x, x+ ei + ej ∈ {0, 1}N , then σ(·) is submodular and monotone increasing on {0, 1}N .

Proof. The first assertion follows from Lemma 2.6.6 of Topkis [35]. For the second assertion,

we need to verify (5). If all correlations are nonnegative, σ(·) is monotone increasing, and in

this case (5) holds if and only if the squares of the two sides of (5) are ordered the same way.

This condition is implied by (15). To see this, rearrange (5) as

σ(x+ ei + ej) + σ(x) ≤ σ(x+ ej) + σ(x+ ei),

and note that

σ2(x+ ei + ej) = x>Σx+ σ2
i + σ2

j + 2σij + 2x>Σei + 2x>Σej .

Squaring both sides of the above inequality and using the above equality and simple algebra

gives (15).

2.5 Conditional Covariance Matrices

Suppose X1, . . . , XN are jointly normal with positive definite covariance matrix Σ, and consider

the effect of conditioning on a subset of these variables. Without loss of generality, we may

consider the case of conditioning on the last N − k of the variables, Xk+1, . . . , Xk. Write Σ in

block form as

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,
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where Σ11 is k × k. Then the conditional covariance matrix is given by the Schur complement

Σ1|2 = Σ11 − Σ12Σ−1
22 Σ21.

The conditional covariance matrix is the relevant tool for measuring the risk in X1, . . . , Xk

conditional on stressed values of Xk+1, . . . , XN . The following result shows that conditioning

often preserves submodularity:

Proposition 2.11. If Σ satisfies the conditions of Proposition 2.4, 2.5, or 2.6(i), then Σ1|2 is

submodular.

2.6 A Submodularity Ratio

Das and Kempe [8] find that certain greedy algorithms that yield optimal solutions for sub-

modular functions perform well on functions that are close to being submodular. To measure

if a function is close to being submodular, they introduced the notion of a submodularity ratio.

In this spirit, we define

γ = max
x<y,y+ei∈{0,1}N

σ(x) + σ(y + ei)

σ(x+ ei) + σ(y)
. (16)

Then σ(·) is submodular on {0, 1}N if and only if γ ≤ 1, and γ > 1 provides a measure of how

far σ deviates from submodularity. Our next result provides a simple upper bound on γ

Proposition 2.12. If λmax and λmin denote the largest and smallest eigenvalues of the positive

definite covariance matrix Σ, then

γ ≤
√
λmax

λmin

√
N − 2 +

√
N

2
√
N − 1

≤
√
λmax

λmin
. (17)

Thus, we can bound deviation from submodularity for an arbitrary covariance matrix with

knowledge of its eigenvalues.

2.7 Other Risk Measures

We have thus far focused on submodularity of standard deviation. In this section, we briefly

consider other risk measures.

Additive Measures

If a separate margin requirement is imposed on each trade, without consideration of portfolio

diversification, the total margin requirement for a set of trades A ⊆ S would take the form∑
i∈A ci, for some trade-specific charges ci. Any such measure is submodular. Under current
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rules for bilateral trading, separate margin requirements are calculated by asset category —

interest-rate, credit, equity, and commodity derivatives — with no diversification recognized

across categories; see the discussion in Ghamami and Glasserman [20]. If the margin require-

ment in each category is submodular, then the sum across categories is also submodular.

Downside Risk

By the expected downside risk for a random variable X we mean E[max{0, X}]; recall that

each Xi represents a potential loss. If X1, . . . , XN are jointly normal with zero mean, then

d(A) = E

[
max

{
0,
∑
i∈A

Xi

}]
=
σ(A)√

2π
,

so submodularity of d(·) is equivalent to submodular of σ(·).

Value-at-Risk and Expected Shortfall

The value-at-risk at tail probability 0 < α < 1/2 for a portfolio of trades A is given by

VaRα(A) = inf{u ∈ R : P (
∑
i∈A

Xi > u) ≤ α}.

The corresponding expected shortfall is

ESα(A) =
1

α

∫ 1

1−α
VaRp(A) dp.

These measures simplify for elliptical distributions. The vector X = (X1, . . . , XN )> of trades

has an elliptical distribution if it can be represented as µ+RMU , where µ is a vector of means,

U is uniformly distributed on the sphere {u ∈ Rk : ‖u‖ = 1}, for some k ≤ N , M is a fixed

N × k matrix, and R is a scalar random variable independent of U . The elliptical distributions

include, among many other examples, the multivariate normal and multivariate t distributions.

In the elliptical case,

VaRα(A) = x>Aµ+ σ(A)kα, σ(A) =
√
x>AMM>xA,

where kα does not depend on A; see Theorem 6.8 of McNeil, Frey, and Embrechts [26]. Thus,

VaRα is submodular precisely if the matrix MM> is submodular. Expected shortfall inherits

submodularity from value-at-risk.

Exponential Utility

Hedging errors in markets with transactions costs are often evaluated using exponential utility

(following Hodges and Neuberger [24]) or its corresponding risk premium. In the multivariate

12



normal case with mean zero and covariance Σ, this yields the risk measure, for some parameter

γ > 0,

F (A) =
1

γ
logE[exp(−γ

∑
i∈A

Xi)] =
γ

2
σ2(A) =

γ

2
xAΣxA.

The variance function σ2(·) is submodular on {0, 1}N if and only if all off-diagonal entries of

Σ are negative (Murota [28], Proposition 2.6); that is, if and only if all pairwise correlations

between trades are negative.

Entropy

Entropy measures are sometimes used to quantify dispersion in asset returns; see, for example,

Philippatos and Wilson [30], Backus, Chernov, and Zin [5], and, in the setting of CCP risk

management, De Genaro [10]. Suppose that X1, . . . , XN have finite support, and for any A ⊆
1, . . . , N , let fA denote the probability mass function of the vector XA formed by those Xi

with i ∈ A. Define the entropy H(A) = −E[log fA(XA)]. Fujishige [15] showed that H is

increasing (A ⊆ B ⇒ H(A) ≤ H(B)) and submodular, without restrictions on the dependence

among the Xi. For continuous random variables, the corresponding differential entropy is not

automatically submodular. However, in the special case of multivariate normal X1, . . . , XN ,

entropy simplifies to

H(A) =
1

2
(|A|(1 + log 2π) + log det(ΣA)), (18)

where ΣA is covariance matrix of Xi, i ∈ A. The mapping A 7→ log det(ΣA) is submodular (see

Fan [14] and references there), as is A 7→ |A|, so H is submodular.

An alternative risk measure sets h(A) equal to the entropy of the single random variable∑
i∈AXi. For jointly normal X1, . . . , XN , the sum is again normal and h(A) simplifies to

1 + log(2πσ(A)). Thus, h(·) is submodular if σ(·) is logsubmodular, a case considered in

Proposition 2.9.

3 Risk Allocation: A Single Dealer

We now return to the problem we introduced at the outset in (1). A dealer has a fixed set of

trades S to either clear through a CCP or manage through the non-cleared market. The subset

A ⊆ S of trades cleared through the CCP incur a margin charge F (A), and the remaining set

of trades incur a margin charge of G(S\A). The dealer would like to choose the set of cleared

trades A to minimize the total margin charge in (1).
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3.1 Polymatroid Structure

A function f on the lattice of subsets 2S is call normalized if f(∅) = 0. We will assume that

F and G are normalized, so that no margin charge applies where no trades are allocated, and

we will also assume that they are nonnegative. For a normalized submodular function f , define

the submodular polyhedron

P (f) = {x ∈ RN :
∑
i∈A

xi ≤ f(A), ∀A ⊆ S}, (19)

recalling that N = |S|, and its base polyhedron,

B(f) = {x ∈ P (f) :
∑
i∈S

xi = f(S)}. (20)

The polymatroid associated with f is the intersection of P (f) with the nonnegative orthant,

P+(f) = {x ∈ RN+ :
∑
i∈A

xi ≤ f(A), ∀A ⊆ S}. (21)

If f is monotone increasing as well as normalized and submodular, then it is called a polymatroid

rank function, and it is uniquely determined by P+(f); see Corollary 44.3f of Schrijver [31].

Results in Edmonds [13] solve problem (1) in the case where both F and G are polymatroid

rank functions, which yields the polymatroid intersection problem. We will use his results

as extended to normalized submodular functions (the submodular intersection problem) in

Fujishige [17], Theorem 4.9, and Schrijver [31], Corollary 46.1b, as follows.

Proposition 3.1. If F and G are normalized and submodular, then

min
A⊆S
{F (A) +G(S\A)} = max{

N∑
i=1

xi ∧ yi : x ∈ B(F ), y ∈ B(G)}. (22)

If x and y solve the problem on the right, then A0 = {i : xi < yi} and A1 = {i : xi ≤ yi} are

optimal for the problem on the left.

The result in (22) is commonly formulated with x ∈ P+(F ) (or P (F )) and y ∈ P+(G) (or

P (G)). For any x ∈ P (F ) and y ∈ P (G), we can find x̄ ≥ x in B(F ) and ȳ ≥ y in B(G) and

thus
∑

i x̄i ∧ ȳi ≥
∑

i xi ∧ yi. Optimality of x and y then implies optimality of x̄ and ȳ, so we

may restrict the optimization to the bases. The optimality of A0 and A1 follows from Lemma

7.4 of Fujishige [17]. If xi 6= yi for all i = 1, . . . , N , then A0 = A1 minimizes the left side of (22)

uniquely.

To interpret Proposition 3.1, the result can be fruitfully connected to cooperative game

theory. In particular, the literature on convex games deals with the problem of allocating
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a supermodular value function among multiple players, which can be recast as a problem of

allocating submodular costs; see Shapley [33] and Topkis [35].

To exploit this connection, consider the problem of decomposing the total cost F (S) of

clearing trades through the CCP into charges attributable to individual trades.1 An attribution

is a vector x ∈ RN , with the interpretation that xi is the margin charge attributed to trade i,

i = 1, . . . , N . It is reasonable to require that no subset of trades A be attributed a total margin

charge greater than the charge F (A) incurred in clearing just those trades. The attributions

in P (F ) are the ones that satisfy this condition, and those in B(F ) fully decompose the total

charge F (S). The attributions in B(F ) are the core attributions (or, more conventionally,

allocations) in cooperative game theory.

With this background, we can interpret Proposition 3.1 as follows. The dealer chooses an

attribution x ∈ B(F ) and an attribution y ∈ B(G). Each trade i is allocated to the channel

for which its attributed charge (xi or yi) is smaller. A rule that maximizes the total attributed

margin charge
∑

i xi ∧ yi is optimal. In most applications of convex games, cost decomposition

is the main objective; see, for example, Anily and Haviv [2]. In our setting, it is an intermediate

step in characterizing the optimal allocation of trades to portfolios.

The optimal attribution vectors x and y are nevertheless of independent interest. Suppose,

for example, that different trades are initiated by different trading desks or different trading

units within the dealer’s firm. In addition to finding the minimum cost set of trades A to clear

through the CCP and trades S\A to trade bilaterally, the dealer needs to charge back the total

cost F (A) +G(S\A) to the individual trading units. If the pair (x, y) is optimal for (22), then

attributing a cost of xi∧ yi to trade i, i = 1, . . . , N , fully decomposes the total cost, taking into

account the full portfolio of trades S and the optimal split of trades between the cleared and

bilateral markets.

A core attribution can be constructed as follows. Consider any permutation i1, . . . , iN of

the trades, and allocate to each trade its incremental margin charge under this permutation:

xi1 = F ({i1}), xi2 = F ({i1, i2})− F ({i1}), . . . , xiN = F (S)− F (S\{iN}). (23)

Under this rule, the sum of xi telescopes, so the full amount F (S) is decomposed. Shapley

[33] showed that this attribution is in the core; in fact, x is an extreme point of the convex set

B(F ), and all extreme points of B(F ) are of this form. Taking the equally weighted average

over all attributions (23) yields the Shapley value.

1We use the term allocation for the decision in (1) to assign trades to one portfolio or another. To avoid
confusion, in breaking down a total charge F (S) into a sum of trade-specific charges, we will refer to a decom-
position or attribution of costs, rather than an allocation. The allocation decision in (1) seeks to minimize total
cost, whereas a cost decomposition or attribution keeps the total cost fixed.
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3.2 Examples

To illustrate (22) when F and G are defined by standard deviations, let

ΣF =

(
σ2
F,1 ρFσF,1σF,2

ρFσF,1σF,2 σ2
F,2

)
and ΣG =

(
σ2
G,1 ρGσG,1σG,2

ρGσG,1σG,2 σ2
G,2

)
, (24)

with base-case parameters σF,1 = 1, σF,2 = 2, ρF = 0, and σG,1 = σG,2 = 1.5 and ρG = −0.4.

The associated standard deviation functions are monotone and submodular, so they define

polymatroid rank functions. Panel (a) of Figure 1 shows the corresponding polymatroids for

F (solid) and G (dashed). The base polyhedron for each is the diagonal segment in the upper

right. The figure shows an optimal pair of bases x (filled circle) and y (open circle). Both

coordinates of y are dominated by the coordinates of x, so the optimal solution allocates both

trades to G.

In panels (b)–(d), we vary parameters as indicated in the captions. In panel (b), the optimal

solution allocates both trades to F , in panel (d) it allocates both to G, and in (c) it allocates

one trade to each. With the parameters of panel (d), the standard deviation functions are no

longer monotone, though they are still submodular. The figure in this case shows P (F ) and

P (G), rather than P+(F ) and P+(G).

Figure 2 illustrates the case of

ΣF =

 2 0 0
0 1.5 0
0 0 0.5

 , ΣG =

 0.25 −0.1 0
−0.1 1 0

0 0 6.25

 . (25)

Both satisfy conditions for monotonicity (Proposition 2.4) as well as submodularity, so their

standard deviation functions are polymatroid rank functions and we may restrict their bases to

the positive orthant. The bases are illustrated in Figure 2, with each defined by six inequalities

and lying in the hyperplanes x1 + x2 + x3 = (1>ΣF1)1/2 = 2 and y1 + y2 + y3 = (1>ΣG1)1/2 =
√

7.3, where 1 denotes a vector of 1s.

It is easy to see from the two covariance matrices that the optimal solution allocates trades

1 and 2 to G and trade 3 to F , at a cost of

((e1 + e2)>ΣG(e1 + e2))1/2 + (e>3 ΣF e3)1/2 =
√

1.05 +
√

0.5.

The figure shows optimal base vectors x ≈ (0.63, 2−
√

0.5− 0.63,
√

0.5) and y = (0.5,
√

1.05−
0.5,
√

7.3−
√

1.05). These yield

(x1 ∧ y1) + (x2 ∧ y2) + (x3 ∧ y3) = 0.5 + (
√

1.05− 0.5) +
√

0.5 =
√

1.05 +
√

0.5.
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Figure 1: Optimal (x, y) pairs for F and G defined by (24). Parameters in (a) are σF,1 = 1,
σF,2 = 2, ρF = 0, σG,1 = σG,2 = 1.5 and ρG = −0.4. Parameter changes are indicated in panel
captions.
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Figure 2: Base polyhedra and optimal attribution vectors for example (25)

3.3 Optimal Attributions

Based on a result of Murota [27], optimal vectors x and y can be found as the “most similar”

attributions in B(F ) and B(G). More precisely, suppose the elements of B(F ) and B(G) have

strictly positive entries, so every trade receives a positive margin charge in every attribution.

For any strictly convex and continuously differentiable φ : (0,∞) 7→ R, and any positive vectors

x, y ∈ R|V |++, define the φ-divergence

Dφ(x, y) =
∑
i∈S

xiφ(yi/xi).

Any such φ-divergence provides a measure of dissimilarity between x and y. It follows from

the main theorem in Murota [27] that if (x∗, y∗) minimizes some Dφ(x, y) over x ∈ B(F )

and y ∈ B(G), then (x∗, y∗) solves (22). This then provides an alternative interpretation of

Proposition 3.1: the optimal allocation between the cleared and bilateral markets is achieved

through the cost attributions that minimize the divergence between the attributions to each

trade in the two channels. The solutions shown in Figures 1 and 2 minimize Dφ with φ(t) =

− log t, which corresponds to the Kullback-Leibler divergence for probability distributions.

For computational purposes, one can cast (1) as a submodular minimization problem. It

is easy to see that if G is submodular on 2S , then so is the function defined by A 7→ G(S\A).

Submodularity is also preserved by addition, so H defined by H(A) = [F (A)+G(S\A)]−G(S)

is submodular. Subtracting G(S) in this definition normalizes H to satisfy H(∅) = 0. Solving

(1) is equivalent to minimizing the submodular function H over A ⊆ S. Strongly polynomial
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algorithms for submodular function minimization are discussed in Fujishige [17], Chapter 14,

and Schrijver [31], Chapter 45.

An optimal solution can also be found by solving a quadratic programming problem, using

Fujishige’s [16] minimum norm algorithm. Suppose z∗ minimizes the Euclidean norm ‖z‖ over

z ∈ B(H), noting that z ∈ B(H) is a system of linear inequalities. Fujishige [17], Lemma 7.4,

shows that if z∗ solves this quadratic program, then {i : z∗i < 0} and {i : z∗i ≤ 0} minimize H.

Each z∗i can be interpreted as the additional cost of clearing trade i through the CCP rather

than trading it bilaterally.

3.4 Standard Deviation: Euler Decomposition

If F measures portfolio standard deviation with respect to a covariance matrix ΣF , then the

total risk F (S) = σ(S) can be decomposed using the Euler rule (as in, for example, Denault

[9])

zi = ∂iσ(1) = e>i ΣF1/σ(1), i = 1, . . . , N.

As before, 1 is a vector of 1s. In differentiating σ we have implicitly extended it to the function

y 7→ (y>ΣF y)1/2 on RN . It is immediate that

N∑
i=1

zi = 1>ΣF1/σ(1) = σ(1) ≡ σ(S),

so this rule does indeed decompose the total standard deviation. (If ΣF is diagonally dominant,

then its row sums are nonnegative and zi ≥ 0.) For any A ⊆ S, the Cauchy-Schwarz inequality

yields ∑
i∈A

zi = x>AΣF1/σ(1) ≤
√

(x>AΣFxA)(1>ΣF1)/σ(1) = σ(A),

which proves that z ∈ B(F ).

It follows that when F and G are both defined by standard deviations (with respect to

distinct covariance matrices ΣF and ΣG), a feasible solution to the right side of (22) can be

obtained by calculating the Euler decompositions for each and then allocating each trade based

on the lower of the two attributions.

The Euler decomposition is not an arbitrary feasible solution, for the following reason.

Aubin [4] investigates a “fuzzy core” based on extending the conditions in (20) to hold with

f evaluated throughout the unit hypercube, and not just at its vertices. It follows from his

Proposition 2.1 that for a convex and positively homogeneous risk measure (such as standard

deviation), the Euler decomposition is the unique element of the fuzzy core.

We close this section with a different application of the Euler decomposition. Goemans

et al. [21] show that any monotone submodular function f on 2S can be approximated by a
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root-linear function, in the sense that there are positive constants c1, . . . , cN for which√∑
i∈A

ci ≤ f(A) ≤ O(
√
N logN)

√∑
i∈A

ci,

for all A ⊆ S. In our setting, the approximating root-linear function can be interpreted as a

standard deviation with respect to a diagonal covariance matrix, with values ci on the diagonal.

In particular, the approximating function is submodular; see Proposition 2.1. The algorithm

for computing the ci in Goemans et al. [21] is quite involved. In our setting, we can take them

proportional to the Euler decomposition values and get a sharper upper bound:

Proposition 3.2. Suppose Σ satisfies the conditions in Proposition 2.4, and set ci = e>i Σ1.

Then √∑
i∈A

ci ≤ σ(A) ≤
√

2
∑
i∈A

ci.

Proof. Because the off-diagonal entries of Σ are negative, we have, for any A ⊆ S,∑
i∈A

ci = e>AΣ1 = σ2(A) + e>AΣ(1− eA) ≤ σ2(A).

The conditions in Proposition 2.4 also imply that

ci = σ2
i +

∑
j 6=i

σij ≥ σ2
i /2,

and then

σ2(A) ≤
∑
i∈A

σ2
i ≤ 2

∑
i∈A

ci.

4 Adding Counterparty Risk

We now suppose that S consists of all trades between two dealers. If the dealers face the same

collateral cost functions F and G, then they will agree on how to allocate the trades between

the two trading channels. However, the dealers may face different costs. In particular, a dealer

with a higher credit rating may demand more collateral from a dealer with a lower credit rating

than it offers in return. If G measures capital and collateral costs for bilateral trades, then the

two dealers would face different G functions. They could also face different F functions, where

F measures the collateral costs of trading through a CCP, because of trades with other parties.

For example, the collateral cost of allocating trades A ⊆ S to the CCP could be F (Ã ∪ A),

where Ã is the set of trades with other parties that the dealer has allocated to the CCP. Because

Ã varies by dealer, so does the function A 7→ F (Ã∪A), even if the CCP applies the same F to

all dealers.

20



4.1 A Cost Comparison Condition

To focus on differences in credit quality, we will suppose that the two dealers face costs

h1(A) = F (A) +G1(S\A), hθ(A) = F (A) +Gθ(S\A),

for some normalized submodular functions G1 and Gθ on 2S . Following Fujishige and Nagano

[18], the strong map relation Gθ → G1 means that for all A ⊆ B ⊆ S,

Gθ(B)−Gθ(A) ≥ G1(B)−G1(A). (26)

Clearly, Gθ → G1 implies h1 → hθ.

The strong map relation h1 → hθ allows the following comparison of optimal solutions.

Suppose A1 minimizes h1 and Aθ minimizes hθ. Then A1 ∩Aθ also minimizes h1, and A1 ∪Aθ
also minimizes hθ. In particular, if either h1 or hθ has a unique minimizer, then A1 ⊆ Aθ.

These statements follow from Theorem 2.8.1 of Topkis [35].

From the perspective of a regulator, the strong map relation (26) shows how to increase

collateral costs in the bilateral market to incentivize central clearing (a question studied empir-

ically in Ghamami and Glasserman [20]): replacing G1 with Gθ would lead a dealer to allocate

more trades to F .

In our two-dealer setting, the comparison makes precise the idea that when the bilateral

costs for the two dealers satisfy (26), the dealer facing costs hθ would like to clear at least as

many trades through the CCP as a counterparty with costs h1. An arrangement in which either

party can force central clearing favors dealer 1; an arrangement in which both parties have to

agree before a trade is centrally cleared favors the other dealer.

In fact, more can be said about the relationship between the optimal choices of the two coun-

terparties using the notion of universal bases developed for parametric submodular intersection

problems (Nakamura [29], Fujishige and Nagano [18]). These results are easiest to describe in

the linear case Gθ = θG1, which satisfies (26) for θ ≥ 1 if G is monotone increasing. It follows

from Theorem 4.1 of Fujishige and Nagano [18] that there exist x ∈ B(F ) and y ∈ B(G1) such

that

min
A⊆S
{F (A) + θG(S\A)} =

N∑
i=1

min(xi, θyi), for all θ ≥ 1. (27)

The key point of this result is that the bases x and y do not depend on the parameter t: this

is the sense in which they are universal. In particular, dealers with cost functions h1 and hθ

can use the same x and y to decompose their collateral charges, as in (22). Dealer θ associates

a collateral cost of θyi for trading bilaterally, whereas dealer 1 associates a collateral cost of yi

for the same trade. If the cost functions are increasing as well as submodular, universal bases x
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and y can be found as maximally similar elements of B(F ) and B(G1), in the sense of Murota

[27] discussed in Section 3.3.

The difference (θ − 1)yi provides a rigorous foundation for computing a credit valuation

adjustment, or CVA. In the bilateral market, derivative values are adjusted (relative to theoret-

ical, default-free values) to reflect the risk that the counterparty to the trade will default and

fail to make promised payments on the contract; see Gregory [22] for background. With all

else equal, the same trade will be worth less to the more creditworthy party — the party that

faces the greater risk from default of its counterparty. CVA is often calculated or decomposed

into trade-by-trade adjustments, despite the fact that in practice the adjustment for each trade

depends on the full portfolio of trades. The decomposition in (27) provides a mechanism for

computing trade-level CVA consistent with an overall portfolio of trades, and consistent for

both parties.

These properties extend to nonlinear parametric families of normalized submodular func-

tions (Ft, Gt), t ∈ R, on 2S satisfying Ft1 → Ft2 and Gt2 → Gt1 whenever t1 < t2 (see Fujishige

and Nagano [18]), so we next examine when these relations hold for risk measures.

4.2 Verifying the Comparison Condition

We close this section by examining conditions for the strong map relation in (26) to hold with

specific cost functions, starting with portfolio standard deviation.

Proposition 4.1. Suppose σ and σ̃ are the standard deviation functions on 2S associated with

the covariance matrices Σ and Σ̃. Then

σ̃(B)− σ̃(A) ≥ σ(B)− σ(A) (28)

for all A ⊆ B ⊆ S under any of the following conditions:

(i) Σ̃ = θΣ, for some θ ≥ 1, with Σ satisfying conditions (i) and (ii) of Proposition 2.4;

(ii) Σ̃ and Σ are exchangeable, as in (6), with σ̃ ≥ σ and ρ̃ ≥ ρ ≥ −1/(2N − 1) or with σ̃ = σ

and ρ̃ ≥ ρ ≥ −1/(N − 1);

(iii) Σ̃ and Σ have the form in (7), with ã ≥ a and ṽ = v.

For the case of the Gaussian entropy function in (18), we compare functions H and H̃ of the

form in (18) based on positive definite matrices Σ and Σ̃. We write Σ−1
jj for the jth diagonal

entry of Σ−1. The following result is of independent interest beyond our setting.

Proposition 4.2. (i) If Σ−1
jj ≤ 1, for all j = 1, . . . , N , then H : 2S 7→ R+ is increasing. (ii)

If, in addition, Σ̃−1
jj ≤ 1 and Σ̃−1

jj Σjj ≤ 1, for all j = 1, . . . , N , then H̃ → H.
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5 Systemwide Optimization

We now consider a market with K dealers and a set of trades S = {1, . . . , N} among these

dealers. We denote by Ak, k = 1, . . . ,K, the set of trades in which dealer k participates, and

we denote by Di ⊆ {1, . . . ,K} the set of dealers participating in trade i, i = 1, . . . , N . Two

dealers participate in each trade, so we have

K⋃
k=1

Ak = S,
K∑
k=1

1{i ∈ Ak} =
K∑
k=1

1{k ∈ Di} = 2 ∀i ∈ S.

Write Fk and Gk for dealer k’s margin functions, defined on all subsets of Ak, which are dealer

k’s trades. We extend these functions to all subsets of S by setting, for any B ⊆ S,

Fk(B) = Fk(B ∩Ak), Gk(B) = Gk(B ∩Ak);

in other words, dealer k incurs margin charges only on the trades in which it participates. We

assume that Fk and Gk are normalized and submodular on 2Ak , and the same therefore holds

for their extensions to 2S . The functions

F =
K∑
k=1

Fk, G =
K∑
k=1

Gk

are then also normalized and submodular.

For each k = 1, . . . ,K, B(Fk) and B(Gk) are subsets of RN (rather than R|Ak|) because

we have extended Fk and Gk to all subsets of S. For any x ∈ B(Fk), we claim that xi = 0 if

i 6∈ Ak. By definition, xi ≤ Fk({i}) = Fk({i} ∩ Ak) = 0 if i 6∈ Ak. But for any base we have∑
i xi = Fk(S) = Fk(Ak), so

Fk(Ak)−
∑
i 6∈Ak

xi =
∑
j∈Ak

xj ≤ F (Ak),

which can hold only if xi = 0 for all i 6∈ Ak. Similarly, yi = 0 for y ∈ B(Gk) and i 6∈ Ak.
If dealer k could make its allocation decision in isolation, it would incur an optimal cost of

ck = min
A⊆Ak

Fk(A) +Gk(Ak\A) = max
xk∈B(Fk),yk∈B(Gk)

∑
i∈Ak

xki ∧ yki . (29)

Write ctot for the sum c1 + · · · + cK of these individual costs. This quantity is not in general

a feasible systemwide cost because dealers’ individually optimal allocation decisions may be

incompatible with each other. That is, if dealers k and ` share trade i (i ∈ Ak ∩A`), dealer k’s

optimal solution may allocate trade i to Fk whereas dealer `’s optimal solution may allocate

the same trade to G`, in which case their optimal allocations are not simultaneously feasible.
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The systemwide optimum solves

csys = min
A⊆S

F (A) +G(S\A),

and can be characterized as follows.

Lemma 5.1. The systemwide optimal cost satisfies

csys = max


N∑
i=1

∑
k∈Di

xki

 ∧
∑
k∈Di

yki

 : xk ∈ B(Fk), y
k ∈ B(Gk), k = 1, . . . ,K

 . (30)

Proof. We know from Proposition 3.1 that

csys = max

{
N∑
i=1

xi ∧ yi : x ∈ B(F ), y ∈ B(G)

}
. (31)

It follows from Fujishige [17, p.142] that

B(F ) =
K∑
k=1

B(Fk) ≡ {x1 + · · ·+ xK : xk ∈ B(Fk), k = 1, . . . ,K}, (32)

and similarly B(G) =
∑

k B(Gk). We therefore have

csys = max

{
N∑
i=1

(
K∑
k=1

xki

)
∧

(
K∑
k=1

yki

)
: xk ∈ B(Fk), y

k ∈ B(Gk), k = 1, . . . ,K

}
. (33)

We have already shown that xki = yki = 0 unless k ∈ Di, so the result follows.

This lemma suggests a mechanism for attributing the optimal systemwide cost to individual

trades: the cost attributed to trade i is∑
k∈Di

xki

 ∧
∑
k∈Di

yki

 ,

where xk and yk, k = 1, . . . ,K, achieve the optimum in (30).

The dealers can cooperate to achieve the systemwide optimum by submitting their trade

sets Ak and margin functions Fk and Gk to a central planner. The planner announces charges

1

2

∑
k∈Di

xki and
1

2

∑
k∈Di

yki (34)

for clearing or not clearing trade i. Based on these charges, each dealer makes its own decisions

and contributes the corresponding margin charge. Under this mechanism, each dealer would

make the systemwide optimal allocation, and the total margin charges collected throughout the
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system would sum to csys. Starting from an arbitrary configuration with a cost c > csys, the

difference c− csys could be used to create incentives for individual dealers to make systemwide

optimal allocation decisions. This type of multilateral coordination has a precedent in the OTC

derivatives market: in the related setting of trade compression, dealers cooperate by submitting

information about their derivatives positions to a third party, which finds cycles in the network

of contracts that can be eliminated without changing dealers’ net positions. See, for example,

Vause [36].

The coordination required to achieve a systemwide optimal solution may nevertheless be

difficult to achieve. In practice, conflicting preferences between counterparties over trade allo-

cation are resolved through negotiation. A model of these negotiations would go beyond the

scope of our investigation, so we consider a simple case: dealers make their allocation decisions

sequentially in the order k = 1, . . . ,K, which we take to be their ranking by market power.

Let Ck = A1 ∪ · · · ∪ Ak denote the cumulative set of trades in which the first k dealers

participate. The first dealer solves (29), clears a set B1 ⊆ A1 of trades, and incurs a cost

c̄1 = c1. Once dealer k has made its allocation decision, k = 1, . . . ,K − 2, dealer k + 1 solves

c̄k+1 = min
Bk+1⊆Ak+1\Ck

Fk+1(Bk+1 ∪Bk ∪ · · · ∪B1) +Gk+1((Ck ∪Ak+1)\(Bk+1 ∪Bk ∪ · · · ∪B1)).

The process terminates at the first ko for which Cko = S, which occurs at ko ≤ K−1. If k ≥ ko,
then no trades remain to be allocated by dealer k + 1, and c̄k+1 is evaluated with Bk+1 = ∅.
The total cost under this protocol is cseq = c̄1 + · · ·+ c̄K .

For any C ⊆ S and k = 1, . . . ,K, define

δk(C) = max

 ∑
i∈C∩Ak

|xki − yki | : xk ∈ B(Fk), y
k ∈ B(Gk)

 . (35)

We will use the δk to bound cseq, with the following interpretation. The allocation of trades in

C is constrained and cannot be chosen by dealer k. If xi and yi measure cost attributions for

trades i ∈ C, then the additional cost faced by the dealer as a result of having the allocation

of i fixed should be bounded by |xi − yi|. Summing over i ∈ C bounds the additional cost

due to having all trades in C constrained. More precisely, to get a bound we need to take the

maximum over cost attributions x ∈ B(Fk) and y ∈ B(Gk).

For any normalized submodular functions f and g on 2S , let

∆(f, g) = min
x∈B(f),y∈B(g)

1

2

N∑
i=1

|xi − yi|.

Recall from (32) that every x ∈ B(F ) has a representation as x1 + · · ·+ xK , with xk ∈ B(Fk),
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and every y ∈ B(G) similarly has a representation as y1 + · · ·+ yK , with yk ∈ B(Gk). Define

D(F,G) = min

{
1

2

N∑
i=1

K∑
k=1

|xki − yki | : x ∈ B(F ), y ∈ B(G)

}
, (36)

noting that the sum over k can be limited to k ∈ Di. In light of the discussion surrounding

(34), we interpret D(F,G) as the potential additional cost, over all trades and dealers, resulting

from deviations from the systemwide cost attributions x ∈ B(F ) and y ∈ B(G).

Proposition 5.1. The systemwide optimal cost satisfies

ctot ≤ csys = ctot +
K∑
k=1

∆(Fk, Gk)−∆(F,G) ≤ ctot +D(F,G).

The cost under the sequential solution satisfies

ctot ≤ cseq ≤ ctot +
K∑
k=2

δk(Ck−1).

Combining the inequalities yields an upper bound on cseq − csys ≥ 0.

This result bounds systemwide cost differences using measures of the deviation between the

cost functions F and G. The first comparison shows how much larger the optimal systemwide

cost may be than the sum of the individually optimal costs ctot. This sum is in general infeasible

because different parties to a trade may have incompatible preferences for allocating the trade

to one channel or another. These conflicts are captured by the individual deviations ∆(Fk, Gk)

and ultimately D(F,G). The second statement specializes to the case of sequential decisions

among dealers. In this setting, we know that each dealer is constrained by the allocations

of dealers earlier in the sequence, and this information is captured in the deviation measures

δk(Ck−1).

6 Concluding Remarks

Motivated by changes in the over-the-counter derivatives market, we have investigated the

optimal allocation of trades to portfolios to minimize total risk-based costs. These costs rep-

resent capital or collateral requirements associated with a portfolio’s risk. We have focused

on risk-based costs that are submodular functions of a set of trades. Submodularity reflects

diversification benefits, because it implies that the incremental risk from adding one asset to a

portfolio decreases with the addition of another asset to the portfolio.

We have provided conditions under which familiar measures of risk are in fact submodular,

with particular emphasis on portfolio standard deviation. With these conditions in place, we
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can draw on the classical work of Edmonds [13] on polymatroid intersection and its extensions

to characterize optimal allocations. The solution decomposes the total risk-based cost of a

portfolio into amounts attributable to each trade. An optimal allocation assigns each trade to

the portfolio in which it has the lowest cost attribution.

Using this framework, we have analyzed conflicting allocation decisions by the parties to a

set of trades. Each trade involves two dealers, and the dealers need to make consistent allocation

decisions, but their preferences may differ because they face different costs or because they have

different trades with other dealers. Optimal attribution vectors yield trade-specific valuation

adjustments to reconcile conflicting preferences between two parties. We also analyzed total

systemwide costs in a market with multiple dealers. We have compared decentralized costs,

systemwide optimal costs, and costs under a sequential protocol in which dealers make allocation

decisions in order of market power.

An important topic for further investigation is understanding the dynamics of conflicting

allocation decisions in a market with multiple dealers. The cases we consider — fully decentral-

ized, fully centralized, and sequential — simplify a much more complex process of negotiation,

coordination, and competition. These dynamics have broader implications for the financial sys-

tem. In particular, they influence the split of trades between the cleared and bilateral markets,

the split of trades across multiple clearinghouses, and the systemwide demand for collateral, all

of which have been regulatory concerns associated with the post-crisis reforms of the derivatives

markets.

A Proofs for Section 2

Proposition 2.1. (i) In the diagonal case, for any y ∈ {0, 1}N we have

σ2(y) =
∑
i:yi=1

σ2
i .

Suppose σ2
i > 0 for all i. For any x, x+ ei + ej ∈ {0, 1}N , let

a1 = σ2(x), a2 = σ2(x+ ej), a3 = σ2(x+ ei), a4 = σ2(x+ ei + ej). (37)

Without loss of generality, suppose a2 ≤ a3. Then

0 < a1 < a2 ≤ a3 < a4 and a1 + a4 = a2 + a3. (38)

By the strict concavity of the square root function, (38) implies

√
a4 −

√
a3 <

√
a2 −

√
a1, (39)
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which is condition (3) for submodularity, with strict inequality. If some diagonal entries of Σ

are zero, then σ(·) is the limit of submodular functions (defined by perturbing these diagonal

entries) and is therefore submodular.

(ii) If all correlations are equal to 1, then

σ(x+ ei + ej) = σ(x+ ei) + σ(ej) = σ(x) + σ(ei) + σ(ej),

and (3) again holds.

For case (iii), note that the ak defined in (37) are continuous in λ. The strict inequality in

(39) therefore continues to hold in a right neighborhood of λ = 0, which is to say that Σλ is

submodular in a right neighborhood of λ = 0.

Proposition 2.2. By continuity, σ is submodular on [0, 1]N if and only if it is submodular on

(0, 1)N , and this holds if and only if all its mixed second derivatives satisfy ∂wi∂wjσ(w) ≤ 0,

i 6= j, for all w ∈ (0, 1)N . We have

∂wiσ(w) =
e>i Σw

σ(w)

and

∂wj∂wiσ(w) =
e>i Σej
σ(w)

−
(e>i Σw)(e>j Σw)

σ(w)3
.

So ∂wj∂wiσ(w) ≤ 0 if and only if

(w>Σw)(e>i Σej) ≤ (e>i Σw)(e>j Σw). (40)

Straightforward algebra confirms that this condition holds throughout the unit square if N = 2.

For diagonal Σ, the left side of (40) is zero and the right side is nonnegative for any w ∈ (0, 1)N .

It only remains to show that the diagonal condition is necessary if N ≥ 3.

By continuity, if (40) holds throughout (0, 1)N then it holds throughout [0, 1]N . Set w =

ei + εek, k 6= i, j, and set

d(ε) = (w>Σw)(e>i Σej)− (e>i Σw)(e>j Σw)

= 2(e>i Σek)(e
>
i Σej)ε− [(e>i Σei)(e

>
j Σek) + (e>i Σek)(e

>
i Σej)]ε+O(ε2).

Then d(0) = 0 and (40) implies that d(ε) ≤ 0, for all ε ∈ [0, 1], so d′(0) ≤ 0. But applying (40)

with w = ei and ek in place of ei implies that

d′(0) = (e>i Σek)(e
>
i Σej)− (e>i Σei)(e

>
j Σek) ≥ 0,

so we must in fact have d′(0) = 0. Dividing through by σ2(ei)σ(ej)σ(ek), we can rewrite the

equation d′(0) = 0 in terms of correlations as RikRij = Rjk. Because i, j, and k are arbitrary
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distinct indices, we can use the corresponding identity to replace Rij and get Rik(RikRjk) = Rjk.

If Σ has full rank, then R2
ik < 1, so we must have Rjk = 0. For this to hold for all distinct j

and k, Σ must be diagonal.

Proposition 2.3. Write σP (·) for standard deviation with respect to the K ×K bundled covari-

ance matrix P>ΣP . For any x, y ∈ {0, 1}K , orthogonality of the columns of P implies that

Px, Py ∈ {0, 1}N , so submodularity of Σ yields

σ(Px ∧ Py) + σ(Px ∨ Py) ≤ σ(Px) + σ(Py);

this is a restatement of (2), taking A = {i : (Px)i = 1}, B = {i : (Py)i = 1}. Orthogonality of

the columns of P also yields Px ∧ Py = P (x ∧ y) and Px ∨ Py = P (x ∨ y), so we have

σ(P (x ∧ y)) + σ(P (x ∨ y)) ≤ σ(Px) + σ(Py),

which is to say that

σP (x ∧ y) + σP (x ∨ y) ≤ σP (x) + σP (y),

and this is what we need to conclude that P>ΣP is submodular. For the second statement, we

know from Proposition 2.2 that any bundling with K = 2 is submodular.

Proposition 2.4. We will show that the variance function σ2 on {0, 1}N is submodular and

increasing. That (i) implies submodularity of variance is easy to see directly and is proved in

Murota [28], Proposition 2.6. For monotonicity, suppose w, x,w + x ∈ {0, 1}N . Then

σ2(w + x)− σ2(w) = (w + x)>Σ(w + x)− w>Σw

= x>Σ(x+ 2w)

=
∑
i

xi

σ2
i +

∑
j 6=i

(xj + 2wj)σij

 ,

where the last equality uses the fact that x2
i = xi and xiwi = 0. For each i,

σ2
i +

∑
j 6=i

(xj + 2wj)σij ≥ σ2
i + 2

∑
j 6=i

σij ≥ 0,

using condition (i) for the first inequality and condition (ii) for the second. Thus, σ2(w+ x) ≥
σ2(x).

An increasing concave function of an increasing submodular function is increasing and sub-

modular, so the standard deviation inherits these properties from the variance. More explicitly,

suppose A,B ⊆ S with σ(A) ≤ σ(B). Then monotonicity yields

σ2(A ∩B) ≤ σ2(A) ≤ σ2(B) ≤ σ2(A ∪B)
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and submodularity adds

σ2(A)− σ2(A ∩B) ≥ σ2(A ∪B)− σ2(B).

For any four positive numbers satisfying these inequalities, their square roots satisfy

σ(A)− σ(A ∩B) ≥ σ(A ∪B)− σ(B),

because the square root function is increasing and concave.

Proposition 2.6. Under condition (7), we may use (10) to write σ(x) = g(v>x), where g(s) =
√
s+ as2 is concave on [0,∞). If x + ei + ej ∈ {0, 1}N , i 6= j, let s1 = v>x, s2 = v>(x + ei),

s3 = v>(x + ej), and s4 = v>(x + ei + ej). Without loss of generality, suppose s2 ≤ s3. As

vi, vj ≥ 0, we have s1 ≤ s2 and s3 ≤ s4, and we also have s2 − s1 = s4 − s3. Concavity of g

therefore implies that g(s4)− g(s3) ≤ g(s2)− g(s1), which reduces to (5).

Now let

g(s, t) =
√
s+ as2 + t+ bt2,

and observe that if Σ has the form in (8), then σ(x) = g(v>x,w>x). We claim that the function

g is directionally concave on [0,∞)× [0,∞), meaning that it is concave in each argument and

submodular (Shaked and Shanthikumar [32], p.335). To establish this property, it suffices to

show that all second derivatives of g are nonpositive. For the mixed derivatives we have

∂t∂sg(s, t) = −(1 + 2as)(1 + 2bt)

4g(s, t)3
≤ 0.

For concavity in each argument, consider the function u 7→
√
c+ u+ au2. This function is

concave in u if 4ac ≤ 1. So, for g(s, t) to be concave in s for fixed t, we need 4a(t+ bt2) ≤ 1. As

x ranges over the vertices of the unit hypercube, w>x is bounded by |w|, so it suffices to satisfy

the inequality at t = |w|, which is the first condition in (9). Concavity of g(s, t) in t similarly

follows from the second condition in (9).

Let s1, . . . , s4 be as before, and set t1 = w>x, t2 = w>(x + ei), t3 = w>(x + ej), and

t4 = w>(x + ei + ej). Then t1 ≤ min(t2, t3) ≤ max(t2, t3) ≤ t4, and (s1, t1) + (s4, t4) =

(s2, t2) + (s3, t3). Directional concavity of g yields (Shaked and Shanthikumar [32], p.335),

g(s4, t4)− g(s3, t3) ≤ g(s2, t2)− g(s1, t1), which reduces to (5).

Proposition 2.7. Let c = σ2ρ, the off-diagonal value in (6). To show submodularity of Σξ, it

suffices to show that(
nσ2 + n(n− 1)c+

n∑
i=1

ξi

)1/2

−

(
(n− 1)σ2 + (n− 1)(n− 2)c+

n−1∑
i=1

ξi

)1/2

≤

(
(n− 1)σ2 + (n− 1)(n− 2)c+

n−2∑
i=1

ξi + ξn

)1/2

−

(
(n− 2)σ2 + (n− 2)(n− 3)c+

n−2∑
i=1

ξi

)1/2

(41)
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for 3 ≤ n ≤ N . The first term on the left side can be rearranged as(
cn2 + (σ2 − c)n+

n∑
i=1

ξi

)1/2

.

So, (41) holds if f(x, y) =
√
cx2 + (σ2 − c)x+ y is directionally concave for (x, y) ∈ [3, N ] ×

[0, |ξ|]. For the mixed derivatives to be nonpositive, we need σ2 + c(2x− 1) ≥ 0, and this holds

for all 3 ≤ x ≤ N , if ρ ≥ −1/(2N − 1). The function f is clearly concave in y. Concavity in x

requires (σ2 − c)2 ≥ 4cy. This condition holds when c ≤ 0. For c > 0, dividing both sides by

σ4 shows that this condition follows from (11).

Proposition 2.9. (i) We need to show that for any pairwise orthogonal x, y, w ∈ {0, 1}N ,

σ(x+ y + w)− σ(x+ y) ≤ σ(x+ w)− σ(x). (42)

This inequality holds trivially if either w = 0 or y = 0; if x = 0, the inequality reads

σ(y + w) ≤ σ(y) + σ(w),

which holds for all y, w. So, it suffices to restrict attention to x, y, w ∈ {0, 1}N\{0}. By writing

σ(x+ y + w)− σ(x+ y) =

∫ 1

0
∂tσ(x+ y + tw) dt

and

σ(x+ w)− σ(x) =

∫ 1

0
∂tσ(x+ tw) dt,

we find that it suffices to show that ∂tσ(x+ y + tw) ≤ ∂tσ(x+ tw), for all t ∈ [0, 1].

For any z ∈ {0, 1}N\{0}, differentiation yields

∂tσ(z + tw) =
∂t[(z + tw)>Σ(z + tw)]

2σ(z + tw)

=
2z>Σw + 2tw>Σw

2σ(z + tw)

=
(z + tw)>Σw

σ(z + tw)
= ρ(z + tw,w)σ(w).

So, if condition (i) holds, then

∂tσ(x+ y + tw) = ρ(x+ y + tw,w)σ(w) ≤ ρ(x+ tw,w)σ(w) = ∂tσ(x+ tw).

(ii) Write ∇σ(x) for the gradient of σ at x ∈ RN\{0}. As a mapping from RN to R, σ is convex,

so for any x, y ∈ RN\{0}, we have σ(y) ≥ σ(x) +∇σ(x) · (y − x). In particular,

σ(x+ w)− σ(x) ≥ ∇σ(x) · w,
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and

σ(x+ y + w)− σ(x+ y) ≤ ∇σ(x+ y + w) · w.

At any x 6= 0, ∇σ(x) = x>Σ\σ(x). Condition (13) implies

(x+ y + w)>Σw

σ(x+ y + w)
≤ x>Σw

σ(x)
,

which we can rewrite as ∇σ(x+ y + w) · w ≤ ∇σ(x) · w, from which we get (42).

For logsubmodularity, let g(w) = (1/2) log σ2(w). Then

∂wj∂wig(w) =
σ2(w)∂wj∂wiσ

2(w)− ∂wiσ
2(w)∂wjσ

2(w)

2σ4(w)
.

So g is submodular if the numerator on the right is nonpositive, which holds if

(w>Σw)(e>i Σej) ≤ 2(e>i Σw)(e>j Σw). (43)

Dividing both sides by σ2(w)σ(ei)σ(ej) yields the result. For an exchangeable Σ as in (6), we

may take σ = 1. The left side of (43) can be written as

ρx2
i + ρx2

j + 2ρ2xixj + 2ρ2(xi + xj)
∑
k 6=i,j

xk + ρ
∑
k 6=i,j

x2
k + ρ2

∑
k,l 6=i,j

xkxl (44)

with distinct k and l in the last term. The right side of (43) can be written as

2ρx2
i + 2ρx2

j + 2(ρ2 + 1)xixj + 2(ρ+ ρ2)(xi + xj)
∑
k 6=i,j

xk + 2ρ2
∑
k 6=i,j

x2
k + 2ρ2

∑
k,l 6=i,j

xkxl (45)

with distinct k and l in the last term. By subtracting (44) from (45), it is not difficult to see

that (43) holds when ρ ≥ 1/2.

Proposition 2.11. Suppose Σ satisfies the conditions in Proposition 2.4. As noted following the

statement of that proposition, this makes Σ an M -matrix. It then follows by Theorem 2.4,

p.140, of Berman and Plemmons [6], that all entries of Σ−1
22 are nonnegative. All entries of

Σ12 and Σ21 are nonpositive, so all entries of Σ12Σ−1
22 Σ21 are nonnegative, and all off-diagonal

entries of Σ1|2 are nonpositive.

Suppose we condition on a single variable, which we may assume to be XN . Then the entries

of Σ1|2 take the form

Σ1|2(i, i) = σ2
i −

σ2
iN

σ2
N

, Σ1|2(i, j) = σij −
σiNσjN
σ2
N

, i, j = 1, . . . , N − 1, j 6= i.
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We verify condition (ii) of Proposition 2.4 with i = 1 as follows:

−2
N−1∑
j=2

Σ1|2(j, 1) = −2
N−1∑
j=2

σ1j + 2
σ1N

σ2
N

N−1∑
j=2

σjN

= −2

N∑
j=2

σ1j + 2σ1N + 2
σ1N

σ2
N

N−1∑
j=1

σjN − 2
σ2

1N

σ2
N

≤ σ2
1 + 2σ1N −

σ1N

σ2
N

σ2
N − 2

σ2
1N

σ2
N

≤ σ2
1 − 2

σ2
1N

σ2
N

≤ σ2
1 −

σ2
1N

σ2
N

= Σ1|2(1, 1),

where the first inequality applies condition (ii) of Proposition 2.4 to Σ with i = 1 and i = N ,

recalling that σ1N ≤ 0. As the index i = 1 is arbitrary, the condition holds for all i =

1, . . . , N − 1, and Σ1|2 satisfies the conditions of Proposition 2.4. Proceeding by induction, the

conditions are preserved when we condition on any arbitrary subset of X1, . . . , XN .

Now suppose Σ has the form in (7), and suppose we condition on XN . Let v1|2 denote the

truncation of v to its first N − 1 elements. We can write Σ as

Σ =

(
Σ11 avNv1|2

avNv
>
1|2 vN + av2

N

)
, Σ11 = diag(v1|2) + av1|2v

>
1|2.

Then

Σ1|2 = Σ11 −
a2vN

1 + avN
v1|2v

>
1|2 = diag(v1|2) +

a

1 + avN
v1|2v

>
1|2.

The structure in Proposition 2.6(i) is thus preserved by conditioning, and submodularity is

therefore also preserved. The same holds for (6) as a special case of (7).

Proposition 2.12. For any v ∈ Rn, we have λmin‖v‖2 ≤ v>Σv ≤ λmax‖v‖2. Thus,

σ(x) + σ(y + ei) ≤
√
λmax(‖x‖+

√
‖y‖2 + 1),

and

σ(x+ ei) + σ(y) ≥
√
λmin(

√
‖x‖2 + 1 + ‖y‖).

We therefore have

γ ≤
√
λmax

λmin
·
‖x‖+

√
‖y‖2 + 1√

‖x‖2 + 1 + ‖y‖
=

√
λmax

λmin
f(‖y‖2 + 1, ‖y‖2 − ‖x‖2 + 1),

where

f(t, s) =

√
t− s+

√
t√

t− s+ 1 +
√
t− 1

, 3 ≤ t ≤ N, 2 ≤ s ≤ t− 1.

Differentiation shows that f is an increasing function of t and a decreasing function of s, so its

maximum is attained at t = N , s = 2. Making these substitutions in f yields (17).

33



B Proofs for Sections 4 and 5

Proposition 4.1. Under the conditions of Proposition 2.4, A ⊆ B implies σ(A) ≤ σ(B), and

(28) follows. For case (ii), we have σ(A) = σ
√
|A|+ |A|(|A| − 1)ρ. If ρ̃ ≥ ρ ≥ −1/(2N − 1),

then σ(·) and σ̃(·) are monotone increasing, so σ̃(B) − σ̃(A) ≥ (σ/σ̃)[σ̃(B) − σ̃(A)]; in other

words, it suffices to verify (28) when σ̃ = σ. In this case, (28) states that for the function

(m, ρ) 7→
√
m+m(m− 1)ρ, with m = 1, . . . , N and −1/(N − 1) < ρ < 1, differences in m are

increasing in ρ. If we extend this function to m ∈ [1, N ], the mixed second derivative of the

extension is positive on [1, N ]× (−1/(N − 1), 1), so the result follows.

In case (iii), we can extend σ(·) to a function of x ∈ [0, 1]N and a ≥ 0, with v ∈ RN+ fixed, by

setting g(x, a) =
√
v>x+ a(v>x)2. Differentiation shows that derivatives of this function with

respect to each xi, i = 1, . . . , N , are increasing in a. This implies that, for any x, x+ei ∈ [0, 1]N ,

the difference σ(x+ ei)− σ(x) is increasing in a, from which (28) follows.

Proposition 4.2. The mapping A 7→ |A| is increasing and nonnegative. It follows from Theorem

1 of Friedland [19] that under the condition in (i), A 7→ log det ΣA is increasing and nonnegative

(taking det Σ∅ = 1), so the same holds for H. For (ii), we will use the Hadamard inequality

det ΣA∪j ≤ Σjj det ΣA, A ⊆ S, j 6∈ A. We will also use the Jacobi identity

det ΣA

det Σ
= det Σ−1

Ā
,

where Σ−1
Ā

is the submatrix of Σ−1 formed by the rows and columns i, i 6∈ A; see equation

(12) of Brualdi and Schneider [7]. For any A ⊆ S and j 6∈ A, the Hadamard inequality and the

assumption in (ii) yield

det ΣA∪j
det ΣA

≤ Σjj ≤
1

Σ̃−1
jj

.

Applying the Jacobi identity and then the Hadamard inequality we get

det Σ̃A∪j

det Σ̃A

=
det Σ̃A∪j/ det Σ̃

det Σ̃A/ det Σ̃
=

det Σ̃−1
A∪j

det Σ̃−1
Ā

≥
det Σ̃−1

A∪j

Σ̃−1
jj det Σ̃−1

A∪j

=
1

Σ̃−1
jj

,

so we have shown that log det Σ̃A∪j − log det Σ̃A ≥ log det ΣA∪j − log det ΣA. By applying this

inequality repeatedly, it follows that for any A ⊆ B ⊆ S log det Σ̃B − log det Σ̃A ≥ log det ΣB −
log det ΣA, which is precisely the relation in (26) applied to the log det function with respect to

Σ and Σ̃. It follows from (18) that H̃ → H.

Proposition 5.1. The lower bounds hold by definition so we just prove the upper bounds. For

any real numbers a and b, we have 2(a ∧ b) + |a− b| = a+ b. It follows that for any x ∈ B(F )
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and y ∈ B(G),

2
N∑
i=1

xi ∧ yi =
N∑
i=1

xi +
N∑
i=1

yi −
N∑
i=1

|xi − yi| = F (S) +G(S)−
N∑
i=1

|xi − yi|,

so we can rewrite (31) as

csys =
F (S) +G(S)

2
− 1

2
min

x∈B(F ),y∈B(G)

N∑
i=1

|xi − yi| =
F (S) +G(S)

2
−∆(F,G).

We can similarly write (29) as

ck =
Fk(S) +Gk(S)

2
−∆(Fk, Gk).

Summing over k and subtracting the sum from csys yields the first result. Also, ∆(F,G) ≥ 0,

and
K∑
k=1

∆(Fk, Gk) ≤ min
x∈B(F ),y∈B(G)

1

2

K∑
k=1

N∑
i=1

|xki − yki | = D(F,G).

To bound cseq, we need to investigate the optimal allocation decision for a dealer once some

of the dealer’s trades have already been allocated by other dealers. To examine this problem

generically, let f and g be normalized submodular functions on 2S . Consider a constrained

allocation problem that requires allocation of a set C1 to f and a set C2 to g. The following

lemma compares optimal costs with and without these constraints.

Lemma B.1. Let f and g be normalized submodular functions on 2S. Let C1 and C2 be disjoint

subsets of S, and let C = C1 ∪ C2 and SC = S\C. Then

min
A⊆SC

f(A ∪ C1) + g((SC\A) ∪ C2) (46)

≤ min
A⊆S
{f(A) + g(S\A)}+ max{

∑
i∈C1∪C2

|xi − yi|, x ∈ B(f), y ∈ B(g)} (47)

Proof. For A ⊆ S\C, let

fC1(A) = f(A ∪ C1)− f(C1), gC2(A) = g(A ∪ C2)− g(C2).

Then fC1 and gC2 are normalized submodular functions on 2SC , SC = S\C, and we may write

(46) as

f(C1) + g(C2) + min
A⊆SC

fC1(A) + gC2(SC\A)

= f(C1) + g(C2) + max{
∑
i∈SC

xi ∧ yi, x ∈ B(fC1), y ∈ B(gC2)}. (48)
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Without loss of generality, we may take C1 = {1, . . . , n1}, SC = {n1 + 1, . . . , n2}, and C2 =

{n2 + 1, . . . , N}, for some 0 ≤ n1 ≤ n2 ≤ N . An element of B(fC1) or B(gC2) has dimension

|SC | = n2 − n1, and an element of B(f) or B(g) has dimension |C1| + |SC | + |C2| = |S| = N .

We can extend a base vector of fC1 (or gC2) to a base vector of f (or g) as follows:

Lemma B.2. For any x̃ ∈ B(fC1) there is an x ∈ B(f) with xi = x̃i, i ∈ SC , and
∑

i∈C1
xi =

f(C1).

Proof. The proof uses the following property from Shapley [33], Theorem 3: For any normalized

submodular F on 2S , a vector x ∈ RN is a vertex of B(F ) if and only if it has the form in

(23) for some permutation i1, . . . , iN of the indices 1, . . . , N . We will expand x̃ to a vector

(x1, . . . , xn1 , x̃, xn2+1, . . . , xN ), so we index the elements of x̃ by i = n1 + 1, . . . , n2. If x̃ is a

vertex of B(fC1), it has the form in (23) for some permutation in1+1, . . . , in2 of the indices

n1 + 1, . . . , n2, with F replaced by fC1 . Let x be the extreme point of B(f) defined by the

permutation 1, . . . , n1, in1+1, . . . , in2 , n2 + 1, . . . , N . Then
∑

i∈C1
xi = f(C1). Moreover, for

any j = n1 + 1, . . . , n2, xj = f(C1 ∪ {in1+1, . . . , ij}) − f(C1 ∪ {in1+1, . . . , ij−1}), and therefore

xj = fC1({in1+1, . . . , ij}) − fC1({in1+1, . . . , ij−1}) = x̃j . In other words, we have constructed

an element of B(f) that coincides with x̃ on SC . If x̃ is not a vertex of B(fC1), we may write

it as a convex combination of vertices and extend each vertex to an element of B(f). The

corresponding convex combination of these extensions is an element of B(f) that agrees with

x̃ on the elements of SC .

The corresponding property holds for gC2 , so it follows from this lemma that (48) is bounded

above by

max{
∑
i∈C1

xi +
∑
i∈C2

yi +
∑
i∈SC

xi ∧ yi, x ∈ B(f), y ∈ B(g)}

≤ max{
∑
i∈S

xi ∧ yi, x ∈ B(f), y ∈ B(g)}+ max{
∑
i∈C1

xi +
∑
i∈C2

yi −
∑

i∈C1∪C2

xi ∧ yi, x ∈ B(f), y ∈ B(g)}

= max{
∑
i∈S

xi ∧ yi, x ∈ B(f), y ∈ B(g)}+ max{
∑
i∈C1

(xi − yi)+ +
∑
i∈C2

(yi − xi)+, x ∈ B(f), y ∈ B(g)},

which is bounded above by (47).

We now return to the proof of Proposition 5.1 and consider the constrained optimization

problem of dealer k, once the trades in Ck−1 have been allocated. Applying (47), we get

c̄k ≤ ck + δk(Ck−1), and summing over k = 2, . . . ,K concludes the proof.
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