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Abstract

This paper derives the infinite horizon CCAPM with heterogeneous agents, stochastic

dividend taxation and monetary policy. I find that under reasonable assumptions on assets’

dividends and probability distributions of the future dividend taxes and consumption, the

model implies the constant price/after-tax dividend ratios. I also obtain that the higher

current and expected dividend tax rates imply lower current asset prices. Finally, contrary

to popular belief, monetary policy is neutral, in the long run, with respect to the real

equilibrium asset prices.
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1. INTRODUCTION

Unlike monetary policy, the stochastic nature of taxation and its effects
on equilibrium asset prices and allocations have received surprisingly little
attention in the literature. Yet taxes are part of individuals’ and corpo-
rate budget constraints. Moreover, changes in various tax rates are driven
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by an ever-changing political balance of power and the direction of those
changes seems to be highly unpredictable and therefore stochastic. Thus, it
seems entirely appropriate to regard future taxation as both important and
stochastic.
The most recent research on the topic primarily focuses on insecure prop-

erty rights in the finite horizon GEI model. Magin (2016) studies the com-
parative statics of asset prices with respect to various current and future tax
rates in the finite horizon GEI model. He finds that under reasonable assump-
tions, an increase in the current or future stochastic dividend or endowment
tax rates reduces current asset prices. Magin (2015) finds that under reason-
able assumptions, in the finite horizon GEI model, FM equilibria exist for all
stochastic tax rates, except for a closed set of measure zero.
The research conducted so far on the role of stochastic taxation in the

infinite horizon GEI model relies on the CCAPM with identical agents and
focuses primarily on resolving the so-called “Equity Premium Puzzle.”1 Ma-
gin (2014) develops a version of the CCAPM with insecure property rights.
He finds that the current expected equity premium can be reconciled with a
coeffi cient of relative risk aversion of 3.76, thus resolving a substantial part
of the Equity Premium Puzzle in general stocks. Edelstein and Magin (2013)
use the CCAPM with insecure property rights developed in Magin (2014) to
address the Equity Premium Puzzle in REITs. They find that the current
expected equity premium in REITs can be reconciled with a coeffi cient of rel-
ative risk aversion of 4.3-6.3, thus resolving a substantial part of the Equity
Premium Puzzle for securitized real estate. Sialm (2009), in an excellent em-
pirical paper, demonstrates that aggregate stock valuation levels are related
to measures of the aggregate personal tax burden on equity securities. Sialm
(2006) develops a generalized version of the Lucas (1978) dynamic general
equilibrium tree model of production economy (risky assets being in posi-
tive supply) with identical agents and a flat consumption tax that follows a
two-state Markov chain. The model is used to analyze the effects of a flat
consumption tax on asset prices. He finds that under plausible conditions,
investors require higher term and equity premia as compensation for the risk
introduced by tax changes.
This paper derives the infinite horizon CCAPMwith heterogeneous agents,

stochastic dividend taxation and monetary policy and is a natural develop-
ment of the emerging literature on the effects of insecure property rights on

1See DeLong and Magin (2009) for a literature review of the Equity Premium Puzzle.
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equilibrium asset prices and allocations. I find that under reasonable assump-
tions on assets’dividends and probability distributions of the future dividend
taxes and consumption, the model implies the constant price/after-tax div-
idend ratios. I also obtain that the higher current and expected dividend
tax rates imply lower current asset prices. Finally, contrary to popular be-
lief, monetary policy is neutral, in the long run, with respect to the real
equilibrium asset prices.
The paper is organized as follows. Section 2 derives and analyzes the

infinite horizon CCAPM with stochastic taxation. Section 3 derives and
analyzes the infinite horizon CCAPM with stochastic taxation and monetary
policy. Section 4 concludes.

2. The CCAPM with Stochastic Dividend Taxation

We start our analysis by stating the following lemma:

LEMMA (Rubinstein (1976)): Let random variables x and y be bi-
variate normally distributed with expectations

(E [x] , E [y]) = (µx, µy)

and variance-covariance matrix

V =

(
σ2x ρσxσy

ρσxσy σ2y

)
,

where

ρ = COV [x, y]√
V AR[x]V AR[y]

is the correlation coeffi cient between random variables x and y. That is,
random variables x and y have joint density function

f(x, y) = 1

2πσxσy
√
1−ρ2

e
− 1
2(1−ρ2)

[
(x−µx)2

σ2x
−2ρ (x−µx)(y−µy)

σxσy
+
(y−µy)2

σ2y

]
.

Then
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∞∫
a

∞∫
−∞

exf(x, y)dxdy = eµx+
σ2x
2 ·N(−a+µy

σy
+ ρσx), F

∞∫
−∞

∞∫
a

eyf(x, y)dxdy = eµy+
σ2y
2 ·N(−a+µx

σx
+ ρσy) FF

and

∞∫
−∞

∞∫
a

ex+yf(x, y)dxdy = eµx+µy+
(σ2x+2ρσxσy+σ

2
y)

2 ·N(−a+µx
σx

+ ρσy + σx). FFF

We will first use the Lemma to derive the infinite horizon CCAPM with
stochastic taxation:
THEOREM 1: Let K be the set of financial assets and I be the set of

agents. Consider an economy with |K| < ∞ financial assets and |I| < ∞
agents, where the total supply of each asset is equal to 1 and agents maximize
their utility function

Ui(ci, G) = E

[ ∞∑
T=0

bTi (ui(cit+T ) + vi(Gt+T ))

]
∀i ∈ I,

where ui is a CRRA utility function, such that ui(c) = c1−λi
1−λi , subject to

cit+T +
n∑
k=1

zi kt+T+1pkt+T =
n∑
k=1

zi kt+T
(
pkt+T + (1− τ dt+T )dkt+T

)
∀ (i, T ) ∈ I × {0, ...,∞}, where cit is the consumption of an agent i ∈ I

at period t, zi kt is the number of shares of an asset k ∈ K held by an agent
i ∈ I at period t, dkt is the dividend per share of an asset k ∈ K at period
t, τ dt is the stochastic dividend tax rate at period t, Gt is the government
spending at period t given by

Gt+T =
n∑
k=1

τ dt+Tdkt+T .

The Transversality Condition (TC) holds for all assets and agents, i.e.,
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lim
T−→∞

E
[
bTi ·

u′i(cit+T )
u′i(cit)

· pkt+T
]
= 0 ∀ (k, i) ∈ K × I,

where {cit+T}∞T=1 is the equilibrium consumption for an agent i ∈ I.
Assume further

cti+T
cit

=

n∑
k=1

(1−τdt+T )·dkt+T
n∑
k=1

(1−τdt )·dkt
=

(1−τdt+T )·dkt+T
(1−τdt )·dkt

∀ (k, i, T ) ∈ K × I × {0, ...,∞},

i.e., all after-tax dividends are growing at the same rate and individuals’
consumption is growing at the same rate as total dividends.2

E

[
bi

(
(1−τdt+T )·dkt+T+1
(1−τdt )·dkt+T

)1−λi]
= eµc+

1
2
·σ2c < 13 ∀ (k, i, T ) ∈ K×I×{0, ...,∞},

and

ln(bi(
cit+T+1
cit+T

)1−λi) ∼ N(µc, σc) ∀ (i, T ) ∈ I × {0, ...,∞}

with

COV [ln (cit+T1) , ln (cit+T2)] = 0 ∀ ( T1, T2) ∈ {1, ...,∞}× {1, ...,∞},
T1 6= T2.

Then

pkt =
eµc+

1
2σ

2
c

1−eµc+
1
2σ

2
c
· (1− τ dt ) · dkt ∀k ∈ K.

PROOF: See Appendix.

Let us now introduce monetary policy into our analysis.

2Since our modified CCAPM describes a production economy, the total dividend
n∑
k=1

dkt+T represents total output, i.e. GDP.

3See Magin (2014) for calculations.
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3. The CCAPM with Stochastic Dividend Taxation and
Monetary Policy

We will now use the Lemma to derive the infinite horizon CCAPM with
Stochastic Taxation and monetary policy:
THEOREM 2: Let K be the set of financial assets and I be the set of

agents. Consider an economy with |K| < ∞ financial assets and |I| < ∞
agents, where the total supply of each asset is equal to 1 and agents maximize
their utility function

Ui(ci, G) = E

[ ∞∑
T=0

bTi (ui(cit+T ) + vi(Gt+T ))

]
,

where 0 < bi < 1 and ui is a CRRA utility function, such that ui(c) =
c1−λi
1−λi , subject to

cit+T+
n∑
k=1

pkt+T zikt+T+1+
Mit+T+1

pt+T
=

n∑
k=1

(pkt+T+(1−τ dt+T )dkt+T )zikt+T+
Mit+T

pt+T

∀ (i, T ) ∈ I × {0, ...,∞}, where Mit is the quantity of money held by an
agent i ∈ I at period t, Mt =

∑
i∈I
Mit is the total supply of money, Gt is the

government spending at period t given by

Gt+T = τ dt+T ·
n∑
k=1

dkt+T +

(
Mt+T+1 −Mt+T

pt+T

)
︸ ︷︷ ︸

Seigniorage

.

The Transversality Condition (TC) holds for all assets and agents, i.e.,

lim
T−→∞

E
[
bTi ·

u′i(cit+T )
u′i(cit)

· pkt+T
]
= 0 ∀ (k, i) ∈ K × I,

where {cit+T}∞T=1 is the equilibrium consumption for an agent i ∈ I. As-
sume further

cti+T
cit

=
(1−τdt+T )·

n∑
k=1

dkt+T−
[
Mi+T+1−Mt+T

pt+T

]
(1−τdt )·

n∑
k=1

dkt−
[
Mt+1−Mt

pt

] ∀ (i, T ) ∈ I × {0, ...,∞},
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i.e., individuals’ consumption is growing at the same rate as the total

output
n∑
k=1

dkt+T (GDP) consumed by the private sector,

τdt+T ·
n∑
k=1

dkt+T+

(
Mt+T+1−Mt+T

pt+T

)
n∑
k=1

dkt+T

= g ∀T ∈ {0, ...,∞},

i.e., the percentage of the total output
n∑
k=1

dkt+T (GDP) consumed by the

government is constant over time,
n∑
k=1

dkt+T

n∑
k=1

dkt

= dkt+T
dkt
∀ (k, i, T ) ∈ K × I × {0, ...,∞},

i.e., all dividends are growing at the same rate,

E

[
bi

(
dkt+T+1
dkt+T

)1−λi]
= eµc+

1
2
·σ2c < 14 ∀ (k, i, T ) ∈ K × I × {0, ...,∞}

and random variables

xt+T = ln (1− τ t+T+1),
yit+T = ln(bi(

cti+T
cit
)1−λi)

are bivariate normally distributed with expectations

(E [ln (1− τ t+T )], E
[
ln(bi(

cti+T
cit
)1−λi)

]
) = (µτ , µc)

and the variance-covariance matrix

V =

(
σ2τ 0
0 σ2c

)
4 ∀ (i, T ) ∈ I × {0, ...,∞}

with

COV [ln (cit+T1) , ln (cit+T2)] = 0 ∀ ( T1, T2) ∈ {1, ...,∞}× {1, ...,∞},
T1 6= T2.

Then

pkt = eµτ+
1
2
σ2τ · eµc+

1
2σ

2
c

1−eµc+
1
2σ

2
c
· dkt ∀k ∈ K.

4See Magin (2014) for calculations.
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4. Conclusion

This paper derives the infinite horizon CCAPMwith heterogeneous agents,
stochastic dividend taxation and monetary policy and is a natural develop-
ment of the emerging literature on the effects of insecure property rights on
equilibrium asset prices and allocations. I find that under reasonable assump-
tions on assets’dividends and probability distributions of the future dividend
taxes and consumption, the model implies the constant price/after-tax div-
idend ratios. I also obtain that the higher current and expected dividend
tax rates imply lower current asset prices. Finally, contrary to popular be-
lief, monetary policy is neutral, in the long run, with respect to the real
equilibrium asset prices.

Appendix

PROOF OF THEOREM 1: We have that

cit+T =
n∑
k=1

zi kt+T
(
pkt+T + (1− τ dt+T )dkt+T

)
−

n∑
k=1

zi kt+T+1pkt+T

∀ (i, T ) ∈ I × {0, ...,∞}.
Substituting budget constraint into the utility function, we obtain

Ui(ci, G) =

E


∞∑
T=0

bTi

ui(
n∑
k=1

zi kt+T
(
pkt+T + (1− τ dt+T )dkt+T

)
−

n∑
k=1

zi kt+T+1pkt+T︸ ︷︷ ︸
cit+T

) + vi(Gt+T )


 .

Differentiating Ui with respect to zi kt+1 and setting ∂Ui
∂zi kt+1

to 0, we obtain

−pkt · u′i (cit) + bi · E
[
u′i (cit+1)

(
pkt+1 + (1− τ dt+1)dkt+1

)]
= 0.

Therefore,

pkt = E

[
bi

(
cti+T
cit

)−λi (
pkt+1 + (1− τ dt+1) · dkt+1

)]
∀ (k, i) ∈ K × I.

By repeated substitution and using the Transversality Condition, we get

8



pkt = E

[ ∞∑
T=1

bTi

(
cti+T
cit

)−λi
(1− τ dt+T ) · dkt+T

]
∀ (k, i) ∈ K × I. (1)

By assumption of the Theorem, we have that

cti+T
cit

=

n∑
k=1

(1−τdt+T )·dkt+T
n∑
k=1

(1−τdt )·dkt
=

(1−τdt+T )·dkt+T
(1−τdt )·dkt

∀ (k, i, T ) ∈ K × I × {0, ...,∞}.

Hence,

cti+T
cit

=
(1−τdt+T )·dkt+T
(1−τdt )·dkt

∀ (k, i, T ) ∈ K × I × {0, ...,∞}.

Substituting the expression for cti+T
cit

into the previous equation (1), we
obtain

pkt = E

[ ∞∑
T=1

bTi

(
(1−τdt+T )·dkt+T
(1−τdt )·dkt

)−λi
(1− τ dt+T ) · dkt+T

]
∀ (k, i) ∈ K × I.

Therefore,

pkt = E

[ ∞∑
T=1

bTi

(
(1−τdt+T )·dkt+T
(1−τdt )·dkt

)1−λi]
· (1− τ dt ) · dkt ∀ (k, i) ∈ K × I.

Moreover,

ln

(
bi

(
(1−τdt+T )·dkt+T+1
(1−τdt )·dkt+T

)1−λi)
= ln(bi(

cti+T+1
cit+T

)1−λi) ∼ N(µc, σc)

∀ (k, i, T ) ∈ K × I × {0, ...,∞}.
Also,

bTi

(
(1−τdt+T )·dkt+T
(1−τdt )·dkt

)1−λi
=

T−1∏
T=0

[
bi

(
(1−τdt+T )·dkt+T+1
(1−τdt )·dkt+T

)1−λi]

∀
(
k, i, T

)
∈ K × I × {1, ...,∞}.

Taking logarithms of both sides, we obtain
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ln

(
bTi

(
(1−τdt+T )·dkt+T
(1−τdt )·dkt

)1−λi)
= ln

T−1∏
T=0

[
bi

(
(1−τdt+T )·dkt+T+1
(1−τdt+T )·dkt+T

)1−λi] =

=

T−1∑
T=0

ln

(
bi

(
(1−τdt+T+1)·dkt+T+1
(1−τdt+T )·dkt+T

)1−λi)
∀
(
k, i, T

)
∈ K × I × {1, ...,∞}.

Hence,

ln

(
bTi

(
(1−τdt+T )·dkt+T
(1−τdt )·dkt

)1−λi)
=

T−1∑
T=0

ln

(
bi

(
(1−τdt+T+1)·dkt+T+1
(1−τdt+T )·dkt+T

)1−λi)

∀
(
k, i, T

)
∈ K × I × {1, ...,∞}.

Clearly,

E

[
ln

(
bTi

(
(1−τdt+T )·dkt+T
(1−τdt )·dkt

)1−λi)]
=

T−1∑
T=0

E

[
ln

(
bi

(
(1−τdt+T+1)·dkt+T+1
(1−τdt+T )·dkt+T

)1−λi)]
= T · µc

∀
(
k, i, T

)
∈ K × I × {1, ...,∞}

and, since by assumption of the Theorem

COV [ln (cit+T1) , ln (cit+T2)] = 0 ∀ ( T1, T2) ∈ {1, ...,∞}× {1, ...,∞},
T1 6= T2.

we have that

V AR

[
ln

(
bTi

(
(1−τdt+T )·dkt+T
(1−τdt )·dkt

)1−λi)]
=

T−1∑
T=0

V AR

[
ln

(
bi

(
(1−τdt+T+1)·dkt+T+1
(1−τdt+T )·dkt+T

)1−λi)]
= T · σ2c

∀
(
k, i, T

)
∈ K × I × {1, ...,∞}.

Therefore,

ln

(
bTi

(
(1−τdt+T )·dkt+T
(1−τdt )·dkt

)1−λi)
∼ N(T · µc,

√
T · σc)
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∀
(
k, i, T

)
∈ K × I × {1, ...,∞}.

Fix an arbitrary
(
k, i, T

)
∈ K × I × {0, ...,∞} . Let

x = ln

(
bTi

(
(1−τdt+T )·dkt+T
(1−τdt )·dkt

)1−λi)
.

Using F from the previous Lemma, we obtain

E

[
bTi

(
(1−τdt+T )·dkt+T
(1−τdt )·dkt

)1−λi]
= E [ex] = eµx+

σ2x
2 = eT ·µc+

1
2
T ·σ2c

∀
(
k, i, T

)
∈ K × I × {1, ...,∞}.

Thus,

E

[
bTi

(
(1−τdt+T )·dkt+T
(1−τdt )·dkt

)1−λi]
= eT ·µc+

1
2
T ·σ2c ∀

(
k, i, T

)
∈ K × I × {1, ...,∞}.

Hence, summing over ∀T ∈ {1, ...,∞}, we obtain

E

[ ∞∑
T=1

bTi

(
(1−τdt+T )·dkt+T
(1−τdt )·dkt

)1−λi]
=
∞∑
T=1

E

[
bTi

(
(1−τdt+T )·dkt+T
(1−τdt )·dkt

)1−λi]
=

=
∞∑
T=1

eT ·µc+
1
2
T ·σ2c ∀ (k, i) ∈ K × I.

Taking into consideration that by assumption

E

[
bi

(
(1−τdt+T )·dkt+T+1
(1−τdt )·dkt+T

)1−λi]
= eµc+

1
2
·σ2c < 1

∀ (k, i, T ) ∈ K × I × {0, ...,∞} and summing over ∀T ∈ {1, ...,∞}, we
obtain

∞∑
T=1

eT ·µc+
1
2
T ·σ2c = eµc+

1
2σ

2
c

1−eµc+
1
2σ

2
c
.

Therefore,

pkt = E

[ ∞∑
T=1

bTi

(
(1−τdt+T )·dkt+T
(1−τdt )·dkt

)1−λi]
· (1− τ dt ) · dkt = eµc+

1
2σ

2
c

1−eµc+
1
2σ

2
c
· (1− τ dt ) · dkt.

So
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pkt =
eµc+

1
2σ

2
c

1−eµc+
1
2σ

2
c
· (1− τ dt ) · dkt ∀k ∈ K. �

PROOF OF THEOREM 2: We have that

cit+T =
n∑
k=1

(pkt+T + (1− τ dt+T )dkt+T )zikt+T −
n∑
k=1

pkt+T zikt+T+1 −
(
Mit+T+1−Mit+T

pt+T

)
∀ (i, T ) ∈ I × {0, ...,∞}.
Substituting budget constraint into the utility function, we obtain

Ui(ci, G) =

E


∞∑
T=0

bTi

ui(
n∑
k=1

zikt+T
(
pkt+T + (1− τ dt+T )dkt+T

)
−

n∑
k=1

zikt+T+1pkt+T −
(
Mit+T+1 −Mit+T

pt+T

)
︸ ︷︷ ︸

cit+T

) + vi(Gt+T )


 .

Differentiating Ui with respect to zikt+1 and setting ∂Ui
∂zikt+1

to 0, we obtain

−pkt · u′i (cit) + bi · E
[
u′i (cit+1)

(
pkt+1 + (1− τ dt+1)dkt+1

)]
= 0

∀ (k, i) ∈ K × I.
Therefore,

pkt = E

[
bi

(
cti+T
cit

)−λi (
pkt+1 + (1− τ dt+1) · dkt+1

)]
∀ (k, i) ∈ K × I.

By repeated substitution and using the Transversality Condition, we get

pkt = E

[ ∞∑
T=1

bTi

(
cti+T
cit

)−λi
(1− τ dt+T ) · dkt+T

]
∀ (k, i) ∈ K × I. (2)

By assumption of the Theorem, we have that

cti+T
cit

=
(1−τdt+T )·

n∑
k=1

dkt+T−
[
Mi+T+1−Mt+T

pt+T

]
(1−τdt )·

n∑
k=1

dkt−
[
Mt+1−Mt

pt

] ∀ (i, T ) ∈ I × {0, ...,∞}.
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Also, by assumption of the Theorem, we have that

τ dt+T ·
n∑
k=1

dkt+T +

(
Mt+T+1 −Mt+T

pt+T

)
︸ ︷︷ ︸

Seigniorage︸ ︷︷ ︸
Toyal Government Revenue

n∑
k=1

dkt+T︸ ︷︷ ︸
Total Output

= g ∀T ∈ {1, ...,∞}.

Therefore,

cti+T
cit

=
(1−τdt+T )·

n∑
k=1

dkt+T−
[
Mi+T+1−Mt+T

pt+T

]
(1−τdt )·

n∑
k=1

dkt−
[
Mt+1−Mt

pt

] =

n∑
k=1

dkt+T−g·
n∑
k=1

dkt+T

n∑
k=1

dkt−g·
n∑
k=1

dkt

=

n∑
k=1

dkt+T

n∑
k=1

dkt

∀ (i, T ) ∈ I × {0, ...,∞}.
In addition, by assumption of the Theorem, we have that

n∑
k=1

dkt+T

n∑
k=1

dkt

= dkt+T
dkt
∀k ∈ K.

Hence,

cti+T
cit

= dkt+T
dkt
∀ (k, i) ∈ K × I.

Substituting the expression for cti+T
cit

into the previous equation (2), we
obtain

pkt = E

[ ∞∑
T=1

bTi

(
dkt+T
dkt

)−λi
· (1− τ dt+T ) · dkt+T

]
∀ (k, i) ∈ K × I.

Therefore,

pkt = E

 ∞∑T=1bTi
(
dkt+T
dkt

)1−λi
︸ ︷︷ ︸

eyit+T

· (1− τ dt+T )︸ ︷︷ ︸
ext+T

 · dkt ∀ (k, i) ∈ K × I.
13



Then

pkt = E

 ∞∑T=1bTi
(
dkt+T
dkt

)1−λi
︸ ︷︷ ︸

eyit+T

· (1− τ dt+T )︸ ︷︷ ︸
ext+T

 · dkt

=
∞∑
T=1

E

bTi
(
dkt+T
dkt

)1−λi
︸ ︷︷ ︸

eyit+T

· (1− τ dt+T )︸ ︷︷ ︸
ext+T

 · dkt ∀ (k, i) ∈ K × I
and so

pkt =
∞∑
T=1

E

bTi
(
dkt+T
dkt

)1−λi
︸ ︷︷ ︸

eyit+T

· (1− τ dt+T )︸ ︷︷ ︸
ext+T

 · dkt ∀ (k, i) ∈ K × I.
We also know from the previous Lemma that if random variables xt+T

and yyit+T are bivariate normally distributed with expectations

(E

ln (1− τ t+T )︸ ︷︷ ︸
xt+T

, E
ln(bi(cti+Tcit

)1−λi)︸ ︷︷ ︸
yyit+T

) = (µτ , µc)
and the variance-covariance matrix

V =

(
σ2τ 0
0 σ2c

)
,

then by FFF we obtain

E

bTi
(
dkt+T
dkt

)1−λi
︸ ︷︷ ︸

eyit+T

· (1− τ dt+T )︸ ︷︷ ︸
ext+T

 = [eµτ+ 1
2
σ2τ

]
·
[
eT ·µc+

1
2
T ·σ2c
]

14



∀ (k, i, T ) ∈ K × I × {0, ...,∞}.
Therefore,

pkt =
∞∑
T=1

E

bTi
(
dkt+T
dkt

)1−λi
︸ ︷︷ ︸

eyit+T

· (1− τ dt+T )︸ ︷︷ ︸
ext+T

 · dkt =
= eµτ+

1
2
σ2τ ·

∞∑
T=1

[
eT ·µc+

1
2
T ·σ2c
]
· dkt ∀ (k, i) ∈ K × I.

Hence,

pkt = eµτ+
1
2
σ2τ ·
[ ∞∑
T=1

eT ·µc+
1
2
T ·σ2c

]
· dkt ∀k ∈ K.

Taking into consideration that by assumption

E

[
bi

(
dkt+T+1
dkt+T

)1−λi]
= eµc+

1
2
·σ2c < 1

∀ (k, i, T ) ∈ K × I × {0, ...,∞} and summing over ∀T ∈ {1, ...,∞}, we
obtain

∞∑
T=1

eT ·µc+
1
2
T ·σ2c = eµc+

1
2σ

2
c

1−eµc+
1
2σ

2
c
.

Therefore,

pkt = eµτ+
1
2
σ2τ · eµc+

1
2σ

2
c

1−eµc+
1
2σ

2
c
· dkt ∀k ∈ K. �
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